Processing math: 100%

7.4 Assess Your Understanding

Printed Page 498

Skill Building

In Problems 1–32, find each integral.

  1. dxx2+4x+5

tan1(x+2)+C

  1. dxx2+2x+5

  1. dxx2+4x+8

12tan1x+22+C

  1. dxx26x+10

  1. 2dx3+2x+2x2

255tan12x+15+C

  1. 3dxx2+6x+10

  1. xdx2x2+2x+3

14ln(2x2+2x+3)510tan12x+15+C

  1. 3xdxx2+6x+10

  1. dx8+2xx2

sin1x13+C

  1. dx54x2x2

  1. dx4xx2

sin1x22+C

  1. dxx26x10

  1. dx(x+1)x2+2x+2

ln|x2+2x+21x+1|+C

  1. dx(x4)x28x+17

  1. dx242xx2

sin1x+15+C

  1. dx9x2+6x+10

  1. x5x22x+5dx

x22x+54ln|x1+x22x+5|+C

  1. x+1x24x+3dx

  1. 31dxx22x+5

ln(2+1)

  1. 11/2x2dx2xx2

  1. exdxe2x+ex+1

ln(ex+12+e2x+ex+1)+C

  1. cosxdxsin2x+4sinx+3

  1. 2x34xx23dx

24xx23+sin1(x2)+C

  1. x+3x2+2x+2dx

  1. dx(x22x+10)3/2

x19x22x+10+C

  1. dxx22x+10

  1. dxx2+2x3

ln|x+1+x2+2x3|+C

  1. xx24x1dx

  1. 5+4xx2x2dx

5+4xx23ln|3+5+4xx2|+3ln|x2|+C

  1. 5+4xx2dx

  1. x dxx2+2x3

x2+2x3ln|x+1+x2+2x3|+C

  1. x dxx24x+3

Applications and Extensions

  1. Show that if k>0, then dx(x+h)2+k=ln[(x+h)2+k+x+h]+C

See the Student Solutions Manual.

  1. Show that if a>0 and b24ac>0, then dxax2+bx+c=1aln|ax2+bx+c+ax+b2a|+C

Challenge Problem

  1. Find a+xaxdx, where a>0.

asin1xaa2x2+C