Printed Page 498
Skill Building
In Problems 1–32, find each integral.
∫dxx2+4x+5
tan−1(x+2)+C
∫dxx2+2x+5
∫dxx2+4x+8
12tan−1x+22+C
∫dxx2−6x+10
∫2dx3+2x+2x2
2√55tan−12x+1√5+C
∫3dxx2+6x+10
∫xdx2x2+2x+3
14ln(2x2+2x+3)−√510tan−12x+1√5+C
∫3xdxx2+6x+10
∫dx√8+2x−x2
sin−1x−13+C
∫dx√5−4x−2x2
∫dx√4x−x2
sin−1x−22+C
∫dx√x2−6x−10
∫dx(x+1)√x2+2x+2
ln|√x2+2x+2−1x+1|+C
∫dx(x−4)√x2−8x+17
∫dx√24−2x−x2
sin−1x+15+C
∫dx√9x2+6x+10
∫x−5√x2−2x+5dx
√x2−2x+5−4ln|x−1+√x2−2x+5|+C
∫x+1x2−4x+3dx
∫31dx√x2−2x+5
ln(√2+1)
∫11/2x2dx√2x−x2
∫exdx√e2x+ex+1
ln(ex+12+√e2x+ex+1)+C
∫cosxdx√sin2x+4sinx+3
∫2x−3√4x−x2−3dx
−2√4x−x2−3+sin−1(x−2)+C
∫x+3√x2+2x+2dx
∫dx(x2−2x+10)3/2
x−19√x2−2x+10+C
∫dx√x2−2x+10
∫dx√x2+2x−3
ln|x+1+√x2+2x−3|+C
∫x√x2−4x−1dx
∫√5+4x−x2x−2dx
√5+4x−x2−3ln|3+√5+4x−x2|+3ln|x−2|+C
∫√5+4x−x2dx
∫x dx√x2+2x−3
√x2+2x−3−ln|x+1+√x2+2x−3|+C
∫x dx√x2−4x+3
Applications and Extensions
Show that if k>0, then ∫dx√(x+h)2+k=ln[√(x+h)2+k+x+h]+C
See the Student Solutions Manual.
Show that if a>0 and b2−4ac>0, then ∫dx√ax2+bx+c=1√aln|√ax2+bx+c+√ax+b2√a|+C
Challenge Problem
Find ∫√a+xa−xdx, where a>0.
asin−1xa−√a2−x2+C