Concepts and Vocabulary
True or False The Ratio Test can be used to show that the series \(\sum\limits_{k\,=\,1}^{\infty }\cos ( k\pi )\) diverges.
True or False In using the Ratio Test, if \( \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =L,\) then the sum of the series \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) equals \(L.\)
True or False In using the Ratio Test, if \( \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =1\), then the Ratio Test indicates that the series \( \sum\limits_{k\,=\,1}^{\infty }a_{k}\) converges.
True or False The Root Test works well if the \(n\)th term of a series of nonzero terms involves an \(n\)th root.
Skill Building
In Problems 5–22, use the Ratio Test to determine whether each series converges or diverges.
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{4k^{2}-1}{2^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{(2k+1)2^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}k\left( \dfrac{2}{3}\right)^{k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{5^{k}}{k^{2}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{10^{k}}{(2k)!}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{(2k)!}{5^{k}3^{k-1}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k}{(2k-2)!}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{(k+1)!}{3^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{2^{k}}{k(k+1)}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{k^{2}(k+1)^{2}}\)
\(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k^{3}}{k!} \)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{k^{k+1}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{3^{k-1}}{k\cdot 2^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k(k+2)}{3^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k}{e^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{e^{k}}{k^{3}}\)
\(\sum\limits_{k\,=\,1}^{\infty }k\cdot 2^{k}\)
\(\sum\limits_{k\,=\,1}^{\infty }\dfrac{4^{k}}{k}\)
In Problems 23–34, use the Root Test to determine whether each series converges or diverges.
\(\sum\limits_{k\,=\,1}^{\infty }\left( \dfrac{2k+1}{5k+1}\right) ^{\!\!k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\left( \dfrac{3k-1}{2k+1}\right) ^{\!\!k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\left( \dfrac{k}{5}\right) ^{\!\!k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{\pi^{2k}}{k^{k}}\)
\(\sum\limits_{k\,=\,2}^{\infty}\left(\dfrac{\ln k}{k}\right) ^{\!\!k}\)
\(\sum\limits_{k\,=\,2}^{\infty}\left(\dfrac{1}{\ln k}\right) ^{\!\!k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\left(\dfrac{\sqrt{k^{2}+1}}{3k}\right)^{k} \)
\(\sum\limits_{k\,=\,1}^{\infty}\left(\dfrac{\sqrt{4k^{2}+1}}{k}\right) ^{\!\!k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{2}}{2^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{3}}{3^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k^{4}}{5^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k}{3^{k}}\)
In Problems 35–44, determine whether each series converges or diverges.
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{10}{(3k+1)^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\left( 1+\dfrac{1}{k}\right) ^{\!\!k^{2}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{(k+1) (k+2) }{k!}\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{(3k+1) !} \)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k\ln k}{2^{k}}\)
\(\sum\limits_{k\,=\,1}^{\infty}\left[ \ln \left( e^{3}+\dfrac{1}{k}\right)\right]^{k}\)
\(\sum\limits_{k\,=\,1}^{\infty}\sin ^{k}\left(\dfrac{1}{k}\right)\)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{k}}{2^{k^{2}}} \)
\(\sum\limits_{k\,=\,1}^{\infty}\dfrac{\left( 1+\dfrac{1}{k}\right) ^{\!\!2k}}{e^{k}}\)
\(\sum\limits_{k\,=2}^{\infty} \dfrac{2^{k}(k+1) }{k^{2}(k+2)}\)
Applications and Extensions
For the divergent series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}\), show that \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =1\).
596
For the convergent series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{ k^{2}}\), show that \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{ a_{n+1}}{a_{n}}\right\vert =1\).
Give an example of a convergent series \(\sum\limits_{k\,= \,1}^{\infty }a_{k}\) for which \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \neq \infty \) does not exist.
Give an example of a divergent series \(\sum\limits_{k\,= \,1}^{\infty }a_{k}\) for which \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \neq \infty \) does not exist.
Determine whether the following series is convergent or divergent: \[ \frac{1}{3}-\frac{2^{3}}{3^{2}}+\frac{3^{3}}{3^{3}}-\frac{4^{3}}{3^{4}} +\cdots +\frac{(-1)^{n-1}n^{3}}{3^{n}}+\cdots \]
Show that \(\lim\limits_{n\,\rightarrow \,\infty }\,\dfrac{n!}{n^{n}}=0\), where \(n\) denotes a positive integer.
Show that the Root Test is inconclusive for \( \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}\) and \(\sum\limits_{k\,= \,1}^{\infty }\dfrac{1}{k^{2}}\).
Use the Ratio Test to find the real numbers \(x\) for which the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{x^{k}}{k^{2}}\) converges or diverges.
Prove that \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =\infty\).
Prove the Root Test.
The terms of the series \[ \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{8 }+\dfrac{1}{32}+\cdots \]
are \(a_{2k}=\dfrac{1}{2^{k}}\) and \(a_{2k-1}=\dfrac{1}{2^{k+1}}.\)
Challenge Problems
Show that the following series converges: \[ 1+\frac{2}{2^{2}}+\frac{3}{3^{3}}+\frac{1}{4^{4}}+\frac{2}{5^{5}}+\frac{3}{ 6^{6}}+\cdots \]
Show that \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{(k+1)^{2}}{(k+2) !}\) converges.
(Hint: Use the Limit Comparison Test and the convergent series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}.\))
Suppose \(0<a<b<1\). Use the Root Test to show that the series \[ a+b+a^{2}+b^{2}+a^{3}+b^{3}+\cdots \]
converges.
Show that if the Ratio Test indicates a series converges, then so will the Root Test. The converse is not true. Refer to Problem 56.