Printed Page 595
Concepts and Vocabulary
True or False The Ratio Test can be used to show that the series ∞∑k=1cos(kπ) diverges.
False
True or False In using the Ratio Test, if lim then the sum of the series \sum\limits_{k\,=\,1}^{\infty }a_{k} equals L.
False
True or False In using the Ratio Test, if \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =1, then the Ratio Test indicates that the series \sum\limits_{k\,=\,1}^{\infty }a_{k} converges.
False
True or False The Root Test works well if the nth term of a series of nonzero terms involves an nth root.
False
Skill Building
In Problems 5–22, use the Ratio Test to determine whether each series converges or diverges.
\sum\limits_{k\,=\,1}^{\infty}\dfrac{4k^{2}-1}{2^{k}}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{(2k+1)2^{k}}
\sum\limits_{k\,=\,1}^{\infty}k\left( \dfrac{2}{3}\right)^{k}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{5^{k}}{k^{2}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{10^{k}}{(2k)!}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(2k)!}{5^{k}3^{k-1}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k}{(2k-2)!}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(k+1)!}{3^{k}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{2^{k}}{k(k+1)}
Diverges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{k^{2}(k+1)^{2}}
\sum\limits_{k\,=\,1}^{\infty }\dfrac{k^{3}}{k!}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{k^{k+1}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{3^{k-1}}{k\cdot 2^{k}}
Diverges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k(k+2)}{3^{k}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k}{e^{k}}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{e^{k}}{k^{3}}
\sum\limits_{k\,=\,1}^{\infty }k\cdot 2^{k}
Diverges
\sum\limits_{k\,=\,1}^{\infty }\dfrac{4^{k}}{k}
In Problems 23–34, use the Root Test to determine whether each series converges or diverges.
\sum\limits_{k\,=\,1}^{\infty }\left( \dfrac{2k+1}{5k+1}\right) ^{\!\!k}
Converges
\sum\limits_{k\,=\,1}^{\infty}\left( \dfrac{3k-1}{2k+1}\right) ^{\!\!k}
\sum\limits_{k\,=\,1}^{\infty}\left( \dfrac{k}{5}\right) ^{\!\!k}
Diverges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{\pi^{2k}}{k^{k}}
\sum\limits_{k\,=\,2}^{\infty}\left(\dfrac{\ln k}{k}\right) ^{\!\!k}
Converges
\sum\limits_{k\,=\,2}^{\infty}\left(\dfrac{1}{\ln k}\right) ^{\!\!k}
\sum\limits_{k\,=\,1}^{\infty}\left(\dfrac{\sqrt{k^{2}+1}}{3k}\right)^{k}
Converges
\sum\limits_{k\,=\,1}^{\infty}\left(\dfrac{\sqrt{4k^{2}+1}}{k}\right) ^{\!\!k}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{2}}{2^{k}}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{3}}{3^{k}}
\sum\limits_{k\,=\,1}^{\infty }\dfrac{k^{4}}{5^{k}}
Converges
\sum\limits_{k\,=\,1}^{\infty }\dfrac{k}{3^{k}}
In Problems 35–44, determine whether each series converges or diverges.
\sum\limits_{k\,=\,1}^{\infty}\dfrac{10}{(3k+1)^{k}}
Converges
\sum\limits_{k\,=\,1}^{\infty}\left( 1+\dfrac{1}{k}\right) ^{\!\!k^{2}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(k+1) (k+2) }{k!}
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{(3k+1) !}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k\ln k}{2^{k}}
Converges
\sum\limits_{k\,=\,1}^{\infty}\left[ \ln \left( e^{3}+\dfrac{1}{k}\right)\right]^{k}
\sum\limits_{k\,=\,1}^{\infty}\sin ^{k}\left(\dfrac{1}{k}\right)
Converges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{k}}{2^{k^{2}}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{\left( 1+\dfrac{1}{k}\right) ^{\!\!2k}}{e^{k}}
Converges
\sum\limits_{k\,=2}^{\infty} \dfrac{2^{k}(k+1) }{k^{2}(k+2)}
Applications and Extensions
For the divergent series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}, show that \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =1.
See Student Solutions Manual.
596
For the convergent series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{ k^{2}}, show that \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{ a_{n+1}}{a_{n}}\right\vert =1.
Give an example of a convergent series \sum\limits_{k\,= \,1}^{\infty }a_{k} for which \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \neq \infty does not exist.
Answers will vary.
Give an example of a divergent series \sum\limits_{k\,= \,1}^{\infty }a_{k} for which \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \neq \infty does not exist.
Determine whether the following series is convergent or divergent: \frac{1}{3}-\frac{2^{3}}{3^{2}}+\frac{3^{3}}{3^{3}}-\frac{4^{3}}{3^{4}} +\cdots +\frac{(-1)^{n-1}n^{3}}{3^{n}}+\cdots
Show that \lim\limits_{n\,\rightarrow \,\infty }\,\dfrac{n!}{n^{n}}=0, where n denotes a positive integer.
See Student Solutions Manual.
Show that the Root Test is inconclusive for \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k} and \sum\limits_{k\,= \,1}^{\infty }\dfrac{1}{k^{2}}.
Use the Ratio Test to find the real numbers x for which the series \sum\limits_{k\,=\,1}^{\infty }\dfrac{x^{k}}{k^{2}} converges or diverges.
Converges if |x| \leq 1; diverges if |x| > 1.
Prove that \sum\limits_{k\,=\,1}^{\infty }a_{k} diverges if \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =\infty.
Prove the Root Test.
See Student Solutions Manual.
The terms of the series \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{8 }+\dfrac{1}{32}+\cdots
are a_{2k}=\dfrac{1}{2^{k}} and a_{2k-1}=\dfrac{1}{2^{k+1}}.
Challenge Problems
Show that the following series converges: 1+\frac{2}{2^{2}}+\frac{3}{3^{3}}+\frac{1}{4^{4}}+\frac{2}{5^{5}}+\frac{3}{ 6^{6}}+\cdots
See Student Solutions Manual.
Show that \sum\limits_{k\,=\,1}^{\infty }\dfrac{(k+1)^{2}}{(k+2) !} converges.
(Hint: Use the Limit Comparison Test and the convergent series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}.)
Suppose 0<a<b<1. Use the Root Test to show that the series a+b+a^{2}+b^{2}+a^{3}+b^{3}+\cdots
converges.
See Student Solutions Manual.
Show that if the Ratio Test indicates a series converges, then so will the Root Test. The converse is not true. Refer to Problem 56.