Processing math: 1%

8.6 Assess Your Understanding

Printed Page 595

Concepts and Vocabulary

  1. True or False The Ratio Test can be used to show that the series k=1cos(kπ) diverges.

False

  1. True or False In using the Ratio Test, if lim then the sum of the series \sum\limits_{k\,=\,1}^{\infty }a_{k} equals L.

False

  1. True or False In using the Ratio Test, if \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =1, then the Ratio Test indicates that the series \sum\limits_{k\,=\,1}^{\infty }a_{k} converges.

False

  1. True or False The Root Test works well if the nth term of a series of nonzero terms involves an nth root.

False

Skill Building

In Problems 5–22, use the Ratio Test to determine whether each series converges or diverges.

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{4k^{2}-1}{2^{k}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{(2k+1)2^{k}}

  1. \sum\limits_{k\,=\,1}^{\infty}k\left( \dfrac{2}{3}\right)^{k}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{5^{k}}{k^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{10^{k}}{(2k)!}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(2k)!}{5^{k}3^{k-1}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k}{(2k-2)!}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(k+1)!}{3^{k}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{2^{k}}{k(k+1)}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{k^{2}(k+1)^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{k^{3}}{k!}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{k^{k+1}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{3^{k-1}}{k\cdot 2^{k}}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k(k+2)}{3^{k}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k}{e^{k}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{e^{k}}{k^{3}}

  1. \sum\limits_{k\,=\,1}^{\infty }k\cdot 2^{k}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{4^{k}}{k}

In Problems 23–34, use the Root Test to determine whether each series converges or diverges.

  1. \sum\limits_{k\,=\,1}^{\infty }\left( \dfrac{2k+1}{5k+1}\right) ^{\!\!k}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\left( \dfrac{3k-1}{2k+1}\right) ^{\!\!k}

  1. \sum\limits_{k\,=\,1}^{\infty}\left( \dfrac{k}{5}\right) ^{\!\!k}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{\pi^{2k}}{k^{k}}

  1. \sum\limits_{k\,=\,2}^{\infty}\left(\dfrac{\ln k}{k}\right) ^{\!\!k}

Converges

  1. \sum\limits_{k\,=\,2}^{\infty}\left(\dfrac{1}{\ln k}\right) ^{\!\!k}

  1. \sum\limits_{k\,=\,1}^{\infty}\left(\dfrac{\sqrt{k^{2}+1}}{3k}\right)^{k}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\left(\dfrac{\sqrt{4k^{2}+1}}{k}\right) ^{\!\!k}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{2}}{2^{k}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{3}}{3^{k}}

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{k^{4}}{5^{k}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{k}{3^{k}}

In Problems 35–44, determine whether each series converges or diverges.

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{10}{(3k+1)^{k}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\left( 1+\dfrac{1}{k}\right) ^{\!\!k^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(k+1) (k+2) }{k!}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{(3k+1) !}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k\ln k}{2^{k}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\left[ \ln \left( e^{3}+\dfrac{1}{k}\right)\right]^{k}

  1. \sum\limits_{k\,=\,1}^{\infty}\sin ^{k}\left(\dfrac{1}{k}\right)

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{k}}{2^{k^{2}}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{\left( 1+\dfrac{1}{k}\right) ^{\!\!2k}}{e^{k}}

Converges

  1. \sum\limits_{k\,=2}^{\infty} \dfrac{2^{k}(k+1) }{k^{2}(k+2)}

Applications and Extensions

  1. For the divergent series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}, show that \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =1.

See Student Solutions Manual.

596

  1. For the convergent series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{ k^{2}}, show that \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{ a_{n+1}}{a_{n}}\right\vert =1.

  1. Give an example of a convergent series \sum\limits_{k\,= \,1}^{\infty }a_{k} for which \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \neq \infty does not exist.

Answers will vary.

  1. Give an example of a divergent series \sum\limits_{k\,= \,1}^{\infty }a_{k} for which \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \neq \infty does not exist.

    1. (a) Show that the series \sum\limits_{k=1}^{\infty }\dfrac{ (-1) ^{k}3^{k}}{k!} converges.
    2. (b) Use technology to find the sum of the series.

  1. (a) Converges by the ratio test
  2. (b) \dfrac{1-e^{3}}{e^{3}}
  1. Determine whether the following series is convergent or divergent: \frac{1}{3}-\frac{2^{3}}{3^{2}}+\frac{3^{3}}{3^{3}}-\frac{4^{3}}{3^{4}} +\cdots +\frac{(-1)^{n-1}n^{3}}{3^{n}}+\cdots

  1. Show that \lim\limits_{n\,\rightarrow \,\infty }\,\dfrac{n!}{n^{n}}=0, where n denotes a positive integer.

See Student Solutions Manual.

  1. Show that the Root Test is inconclusive for \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k} and \sum\limits_{k\,= \,1}^{\infty }\dfrac{1}{k^{2}}.

  1. Use the Ratio Test to find the real numbers x for which the series \sum\limits_{k\,=\,1}^{\infty }\dfrac{x^{k}}{k^{2}} converges or diverges.

Converges if |x| \leq 1; diverges if |x| > 1.

  1. Prove that \sum\limits_{k\,=\,1}^{\infty }a_{k} diverges if \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =\infty.

  1. Prove the Root Test.

See Student Solutions Manual.

  1. The terms of the series \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{8 }+\dfrac{1}{32}+\cdots

    are a_{2k}=\dfrac{1}{2^{k}} and a_{2k-1}=\dfrac{1}{2^{k+1}}.

    1. (a) Show that using the Ratio Test to determine whether the series converges is inconclusive.
    2. (b) Show that using the Root Test to determine whether the series converges is conclusive.
    3. (c) Does the series converge?

Challenge Problems

  1. Show that the following series converges: 1+\frac{2}{2^{2}}+\frac{3}{3^{3}}+\frac{1}{4^{4}}+\frac{2}{5^{5}}+\frac{3}{ 6^{6}}+\cdots

See Student Solutions Manual.

  1. Show that \sum\limits_{k\,=\,1}^{\infty }\dfrac{(k+1)^{2}}{(k+2) !} converges.

    (Hint: Use the Limit Comparison Test and the convergent series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}.)

  1. Suppose 0<a<b<1. Use the Root Test to show that the series a+b+a^{2}+b^{2}+a^{3}+b^{3}+\cdots

    converges.

See Student Solutions Manual.

  1. Show that if the Ratio Test indicates a series converges, then so will the Root Test. The converse is not true. Refer to Problem 56.