Processing math: 5%

8.7 Assess Your Understanding

Printed Page 599

599

Concepts and Vocabulary

  1. True or False The series k=11kp converges if p1.

False

  1. True or False According to the Test for Divergence, an infinite series k=1ak converges if lim

False

  1. True or False If a series is absolutely convergent, then it is convergent.

True

  1. True or False If a series is not absolutely convergent, then it is divergent.

False

  1. True or False According to the Ratio Test, a series \sum\limits_{k=1}^{\infty }a_{k} of nonzero terms converges if \left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert <1.

False

  1. To use the Comparison Test for Convergence to show that a series \sum\limits_{k\,=\,1}^{\infty }a_{k} of positive terms converges,find a series \sum\limits_{k\,=\,1}^{\infty }b_{k} that is known to converge and show that 0 < _______ ≤ ______ .

a_{k}, b_{k}

Skill Building

In Problems 7–39, determine whether each series converges (absolutely or conditionally) or diverges. Use any applicable test.

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{9k^{3}+5k^{2}}{k^{5/2}+4}

Diverges by the Test for Divergence

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{\sqrt{2k+1}}

  1. 6+2+\dfrac{2}{3}+\dfrac{2}{9}+\dfrac{2}{27}+\cdots

Absolutely convergent by the Geometric Series Test

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{k^{2}}\sin \dfrac{\pi }{k}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{3k+2}{k^{3}+1}

Absolutely convergent by the Limit Comparison Test

  1. 1+\dfrac{2^{2}+1}{2^{3}+1}+\dfrac{3^{2}+1}{3^{3}+1}+\dfrac{4^{2}+1}{4^{3}+1}+\cdots

  1. \sum\limits_{k=1}^{\infty }\dfrac{k+4}{k\sqrt{3k-2}}

Diverges by the Comparison Test for Divergence

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{\sin k}{k^{3}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{3^{2k-1}}{k^{2}+2k}

Diverges by the Ratio Test

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{5^{k}}{k!}

  1. \sum\limits_{k=1}^{\infty }\left(1+\dfrac{2}{k}\right) ^{\!\!k}

Diverges by the Test for Divergence

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{2}+4}{e^{k}}

  1. \dfrac{2}{3}-\dfrac{3}{4}\cdot \dfrac{1}{2}+\dfrac{4}{5}\cdot \dfrac{1}{3}-\dfrac{5}{6}\cdot \dfrac{1}{4}+\cdots

Conditionally convergent by the Alternating Series Test

  1. 2+\dfrac{3}{2}\cdot \dfrac{1}{4}+\dfrac{4}{3}\cdot \dfrac{1}{4^{2}}+\dfrac{5}{4}\cdot \dfrac{1}{4^{3}}+\cdots

  1. 1+\dfrac{1\cdot 3}{2!}+\dfrac{1\cdot 3\cdot 5}{3!}+\dfrac{1\cdot 3\cdot 5\cdot 7}{4!}+\cdots

Diverges by the Ratio Test

  1. \dfrac{1}{\sqrt{1\cdot 2\cdot 3}}+\dfrac{1}{\sqrt{2\cdot 3\cdot 4}}+\dfrac{1}{\sqrt{3\cdot 4\cdot 5}}+\cdots

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k!}{(2k)!}

Absolutely convergent by the Ratio Test

  1. \sum\limits_{k\,=\,1}^{\infty}k^{3}e^{-k^{4}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{\sqrt{k}+100}

Diverges by the Limit Comparison Test

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k^{2}+5k}{3+5k^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{\sqrt[3]{k^{4}+4}}

Absolutely convergent by the Comparison Test for Convergence

  1. \sum\limits_{k=1}^{\infty }\dfrac{1}{11}\left(\dfrac{-3}{2}\right) ^{\!\!k}

  1. \dfrac{1}{3}-\dfrac{2}{4}+\dfrac{3}{5}-\dfrac{4}{6}+\cdots

Diverges by the Test for Divergence

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{k(-4)^{3k}}{5^{k}}

  1. \sum\limits_{k\,=\,1}^{\infty}\left( -\dfrac{1}{k}\right) ^{\!\!k}

Absolutely convergent by the Root Test

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{5}{2^{k}+1}

  1. \sum\limits_{k\,=\,1}^{\infty }e^{-k^{2}}

Absolutely convergent by the Root Test

  1. \dfrac{\sin \sqrt{1}}{1^{3/2}}+\dfrac{\sin \sqrt{2}}{2^{3/2}}+\dfrac{\sin \sqrt{3}}{3^{3/2}}+\cdots

  1. \sum\limits_{k\,=\,2}^{\infty}\dfrac{(-1)^{k-1}}{k(\ln k)^{3}}

Absoutely convergent by the Integral Test

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{(2k)^{k}}

  1. \sum\limits_{k\,=\,2}^{\infty}\left( \dfrac{\ln k}{1000}\right) ^{\!\!k}

Diverges by the Root Test

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{1}{\cosh ^{2}k}

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{\tan ^{-1}k}{k^{2}}

Absolutely convergent by the Comparison Test for Convergence

In Problems 40–42, determine whether each series converges or diverges. If it converges, find its sum.

  1. \sum\limits_{k\,=\,1}^{\infty }\left(\sqrt{k+1}-\sqrt{k}\right)

  1. \sum\limits_{k\,=\,4}^{\infty }\left(\dfrac{1}{k-3}-\dfrac{1}{k}\right)

Converges; \dfrac{11}{6}

  1. \sum\limits_{k\,=\,2}^{\infty }\ln \dfrac{k}{k+1}

  1. Determine whether 1+\dfrac{1\cdot 2}{1\cdot 3}+\dfrac{1\cdot 2\cdot 3}{1\cdot 3\cdot 5}+\dfrac{1\cdot 2\cdot 3\cdot 4}{1\cdot 3\cdot 5\cdot 7}+\cdots converges or diverges.

Converges by the Ratio Test.

    1. (a) Show that the series \sum\limits_{k=1}^{\infty }\left[\left(\dfrac{2}{3}\right) ^{\!\!k}-\dfrac{2}{k^{2}+2k}\right] converges.
    2. (b) Find the sum of the series.
    1. (a) Show that the series \sum\limits_{k=1}^{\infty }\left[ \left( -\dfrac{1}{4}\right) ^{\!\!k}+\dfrac{3}{k(k+1) }\right] converges.
    2. (b) Find the sum of the series.

  1. (a) See Student Solutions Manual.
  2. (b) \dfrac{14}{5}

Challenge Problems

    1. (a) Determine whether the series 1-1-\dfrac{1}{2}+ \dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{4}+\dfrac{1}{27}+\dfrac{1}{5 }-\dfrac{1}{81}-\cdots converges or diverges.
    2. (b) Find the sum of the series if it converges.

In Problems 47 and 48, determine whether each series converges or diverges.

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{\ln k}{2k^{3}-1}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty }\sin ^{3}\left(\dfrac{1}{k}\right)