Processing math: 1%

8.8 Assess Your Understanding

Printed Page 609

Concepts and Vocabulary

  1. True or False Every power series k=0ak(xc)k converges for at least one number.

True

  1. True or False Let bn denote the nth term of the power series k=0akxk. If limn|bn+1bn|<1 for every number x, then \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} is absolutely convergent on the interval ( -\infty ,\,\infty ) .

True

  1. True or False If the radius of convergence of a power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} is 0, then the power series converges only for x=0.

True

  1. True or False If a power series converges at one endpoint of its interval of convergence, then it must converge at its other endpoint.

False

  1. True or False The power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} and \sum\limits_{k\,=\,0}^{\infty }a_{k}(x-3)^{k} have the same radius of convergence.

True

  1. True or False The power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} and \sum\limits_{k\,=\,0}^{\infty }a_{k}(x-3)^{k} have the same interval of convergence.

False

  1. True or False If the power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} converges for x=8, then it converges for x=-8.

False

  1. True or False If the power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} converges for x=3, then it converges for x=1.

True

  1. True or False If the power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} converges for x=-4, then it converges for x=3.

True

  1. True or False If the power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} converges for x=3, then it diverges for x=5.

False

  1. True or False A possible interval of convergence for the power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} is [-2,4].

False

  1. True or False If the power series \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} diverges for a number x_{1}, then it converges for all numbers x for which \vert x\vert <\vert x_{1}\vert .

False

Skill Building

In Problems 13–16, find all numbers x for which each power series converges.

  1. \sum\limits_{k\,=\,0}^{\infty} kx^{k}

-1\,{<}\,x\,{<}\,1

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{kx^{k}}{3^{k}}

  1. \sum\limits_{k\,=\,0}^{\infty }\dfrac{(x+1)^{k}}{3^{k}}

-4<x<2

  1. \sum\limits_{k=1}^{\infty}\dfrac{(x-2) ^{k}}{k^{2}}

In Problems 17–26:

  1. (a) Use the Ratio Test to find the radius of convergence and the interval of convergence of each power series.
  2. (b) Use the Root Test to find the radius of convergence and the interval of convergence of each power series.
  3. (c) Which test, the Ratio Test or the Root Test, did you find easier to use? Give the reasons why.

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{2^{k}(k+1) }

(a, b) R=2; -2\le x < 2\quad (c) Answers will vary.

  1. \sum\limits_{k\,=\,0}^{\infty}(-1) ^{k}\dfrac{x^{k}}{2^{k}(k+1) }

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{k+5}

(a, b) R=1; -1\leq x<1\quad (c) Answers will vary.

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{1+k^{2}}

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{k^{2}x^{k}}{3^{k}}

(a, b) R=3; -3< x<3\quad (c) Answers will vary.

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{2^{k}x^{k}}{3^{k}}

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{kx^{k}}{2k+1}

(a, b) R=1; -1< x<1\quad (c) Answers will vary.

  1. \sum\limits_{k\,=\,0}^{\infty}(6x)^{k}

  1. \sum\limits_{k\,=\,0}^{\infty}(x-3)^{k}

(a, b) R=1; 2< x<4\quad (c) Answers will vary.

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{k(2x)^{k}}{3^{k}}

In Problems 27–44, find the radius of convergence and the interval of convergence of each power series.

  1. \sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{k^{3}}

R=1; -1\leq x\leq 1

  1. \sum\limits_{k=2}^{\infty}\dfrac{x^{k}}{\ln k}

  1. \sum\limits_{k=1}^{\infty}\dfrac{(x-2)^{k}}{k^{3}}

R=1; 1\leq x\leq 3

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{k(x-2) ^{k}}{3^{k}}

  1. \!\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}}{(2k+1)!}x^{2k+1}

R=\infty; -\infty< x<\infty

  1. \sum\limits_{k=1}^{\infty}(kx)^{k}

  1. \sum\limits_{k=1}^{\infty}\dfrac{kx^{k}}{\ln (k+1)}

R=1; -1< x<1

  1. \sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{\ln (k+1)}

  1. \sum\limits_{k=0}^{\infty}\dfrac{k(k+1)x^{k}}{4^{k}}

R=4; -4< x<4

610

  1. \sum\limits_{k=1}^{\infty}\dfrac{(-1)^{k}(x-5)^{k}}{k(k+1)}

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(x-3)^{2k}}{9^{k}}

R=3; 0< x<6

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{e^{k}}

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(2x)^{k}}{k!}

R=\infty; -\infty< x<\infty

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{(x+1)^{k}}{k!}

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(x-1)^{4k}}{k!}

R=\infty; -\infty< x<\infty

  1. \sum\limits_{k=1}^{\infty}\dfrac{(x+1)^{k}}{k(k+1)(k+2)}

  1. \sum\limits_{k=1}^{\infty}\dfrac{k^{k}x^{k}}{k!}

R=\dfrac{1}{e}; -\dfrac{1}{e}< x<\dfrac{1}{e}

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{3^{k}(x-2)^{k}}{k!}

  1. A function f is defined by the power series f(x) =\sum\limits_{k\,=\,0}^{\infty }\dfrac{x^{k}}{3^{k}}.

    1. (a) Find the domain of f.
    2. (b) Evaluate f(2) and f(-1).
    3. (c) Find f.

  1. (a) -3<x<3
  2. (b) f(2)=3, f(-1)=\dfrac{3}{4}
  3. (c) f(x)=\dfrac{3}{3-x}
  1. A function f is defined by the power series f(x)=\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k}\left(\dfrac{x}{2}\right)^{k}.

    1. (a) Find the domain of f.
    2. (b) Evaluate f(0) and f(1).
    3. (c) Find f.
  1. A function f is defined by the power series f(x)=\sum\limits_{k\,=\,0}^{\infty }\dfrac{(x-2) ^{k}}{2^{k}}.

    1. (a) Find the domain of f.
    2. (b) Evaluate f(1) and f(2).
    3. (c) Find f.

  1. (a) 0<x<4
  2. (b) f(1)=\dfrac{2}{3}, f(2)=1
  3. (c) f(x)=\dfrac{2}{4-x}
  1. A function f is defined by the power series f(x) =\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k}(x+3)^{k}.

    1. (a) Find the domain of f.
    2. (b) Evaluate f(-3) and f(-2.5).
    3. (c) Find f.
  1. If \sum\limits_{k=0}^{\infty }a_{k\,}x^{k} converges for x=3, what, if anything, can be said about the convergence at x=2? Can anything be said about the convergence at x=5?

Converges at x=2; no information about x=5

  1. If \sum\limits_{k=0}^{\infty }a_{k}(x-2)^{k} converges for x=6, at what other numbers x must the series necessarily converge?

  1. If the series \sum\limits_{k=0}^{\infty }\,a_{k}x^{k} converges for x=6 and diverges for x=-8, what, if anything, can be said about the truth of the following statements?

    1. (a) The series converges for x=2.
    2. (b) The series diverges for x=7.
    3. (c) The series is absolutely convergent for x=6.
    4. (d) The series converges for x=-6.
    5. (e) The series diverges for x=10.
    6. (f) The series is absolutely convergent for x=4.

  1. (a) True
  2. (b) False
  3. (c) False
  4. (d) False
  5. (e) True
  6. (f) True
  1. If the radius of convergence of the power series \sum\limits_{k=0}^{\infty }\,a_{k}(x-3) ^{k} is R=5, what, if anything, can be said about the truth of the following statements?

    1. (a) The series converges for x=2.
    2. (b) The series diverges for x=7.
    3. (c) The series diverges for x=8.
    4. (d) The series converges for x=-6.
    5. (e) The series converges for x=-2.

In Problems 53–58:

  1. (a) Use a geometric series to represent each function as a power series centered at 0.
  2. (b) Determine the radius of convergence and the interval of convergence of each series.

  1. f(x) =\dfrac{1}{1+x^{3}}

  1. (a) f(x)=\sum\limits_{k=0}^{\infty}{(-1)^{k}x^{3k}}
  2. (b) R=1; -1< x<1
  1. f(x) =\dfrac{1}{1-x^{2}}

  1. f(x) =\dfrac{1}{6-2x}

  1. (a) f(x)=\dfrac{1}{6}\sum\limits_{k=0}^{\infty}{\left(\dfrac{x}{3}\right)^{k}}
  2. (b) R=3; -3< x<3
  1. f(x) =\dfrac{4}{x+2}

  1. f(x) =\dfrac{x}{1+x^{3}}

  1. (a) f(x)=\sum\limits_{k=0}^{\infty}{(-1)^{k}x^{3k+1}}
  2. (b) R=1; -1< x<1
  1. f(x) =\dfrac{4x^{2}}{x+2}

In Problems 59–62:

  1. (a) Use the differentiation property of power series to find }f^\prime(x) for each series.
  2. (b) Use the integration property of power series to find the indefinite integral of each series.

  1. f(x) =\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1) ^{k}x^{2k+1}}{(2k+1) !}

  1. (a) f'(x)=\sum\limits_{k=0}^{\infty}{\dfrac{(-1)^{k}x^{2k}}{(2k)!}}
  2. (b) \int{f(x)}\,dx=C+\sum\limits_{k=0}^{\infty}{\dfrac{(-1)^{k}x^{2k+2}}{(2k+2)!}}
  1. f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}x^{2k}}{(2k) !}

  1. f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{k!}

  1. (a) f'(x)=\sum\limits_{k=1}^{\infty}{\dfrac{x^{k-1}}{(k-1)!}}
  2. (b) \int{f(x)}dx=C+\sum\limits_{k=0}^{\infty}{\dfrac{x^{k+1}}{(k+1)!}}
  1. f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}x^{k}}{k!}

In Problems 63–70, find a power series representation of f. Use a geometric series and properties of a power series.

  1. f(x) =\dfrac{1}{(1+x)^{2}}

f(x)=\sum\limits_{k=1}^{\infty}{(-1)^{k-1}kx^{k-1}}, -1 < x < 1

  1. f(x) =\dfrac{1}{(1-x)^{3}}

  1. f(x)=\dfrac{2}{3 (1-x) ^{2}}

f(x)=\dfrac{2}{3}\sum\limits_{k=1}^{\infty}{kx^{k-1}}, -1 < x < 1

  1. f(x) =\dfrac{1}{(1-x) ^{4}}

  1. f(x) =\ln \left( \dfrac{1}{1+x}\right)

f(x)=\sum\limits_{k=0}^{\infty}{\dfrac{(-1)^{k+1}x^{k+1}}{k+1}}, -1 \lt x \leq 1

  1. f(x) =\ln (1-2x)

  1. f(x) =\ln (1-x^{2})

f(x)=-\sum\limits_{k=0}^{\infty}{\dfrac{x^{2k+2}}{k+1}}, -1 < x < 1

  1. f(x) =\ln (1+x^{2})

611

Applications and Extensions

In Problems 71–78, find all x for which each power series converges.

  1. \sum\limits_{k=1}^{\infty}\dfrac{x^k}{k}

-1\leq x<1

  1. \sum\limits_{k=1}^{\infty}\dfrac{(x-4)^{k}}{k}

  1. \sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{2k+1}

-1\leq x<1

  1. \sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{k^{2}}

  1. \sum\limits_{k\,=\,0}^{\infty}x^{k^{2}}

-1<x<1

  1. \sum\limits_{k=1}^{\infty}\dfrac{k^{a}}{a^{k}}(x-a)^{k}, \quad a\neq 0

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{(k!)^{2}}{(2k)!}(x-1)^{k}

-3<x<5

  1. \sum\limits_{k\,=\,0}^{\infty}\dfrac{\sqrt{k!}}{(2k)!}x^{k}

    1. (a) In the geometric series \dfrac{1}{1-x}=\sum \limits_{k\,=\,0}^{\infty }x^{k}, -1\lt x \lt 1, replace x by x^{2} to obtain the power series representation for \dfrac{1}{1-x^{2}}.
    2. (b) What is its interval of convergence?

  1. (a) \sum\limits_{k=0}^{\infty}{x^{2k}}
  2. (b) -1<x<1
    1. (a) Integrate the power series found in Problem 79 for \dfrac{1}{1-x^{2}} to obtain the power series \dfrac{1}{2}\ln \dfrac{1+x}{1-x}.
    2. (b) What is its interval of convergence?
  1. Use the power series found in Problem 80 to get an approximation for \ln 2 correct to three decimal places.

0.693

  1. Use the first 1000 terms of Gregory’s series to approximate \dfrac{\pi }{4}. What is the approximation for \pi ?

  1. If R>0 is the radius of convergence of \sum\limits_{k=1}^{\infty }a_{k}x^{k}, show that \lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =\dfrac{1}{R}, provided this limit exists.

See Student Solutions Manual.

  1. If R is the radius of convergence of \sum\limits_{k=1}^{\infty }a_{k}x^{k}, show that the radius of convergence of \sum\limits_{k=1}^{\infty }a_{k}x^{2k} is \sqrt{R}.

  1. Prove that if a power series is absolutely convergent at one endpoint of its interval of convergence, then the power series is absolutely convergent at the other endpoint.

See Student Solutions Manual.

  1. Suppose \sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} converges for \vert x\vert <R and that \lim\limits_{n\rightarrow \infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert exists. Show that \sum\limits_{k=1}^{\infty }ka_{k}x^{k-1} and \sum\limits_{k\,=\,0}^{\infty } \dfrac{a_{k}}{k+1}x^{k+1} also converge for \vert x\vert <R.

Challenge Problems

  1. Consider the differential equation (1+x^{2})\,y^{\prime \prime} -4xy^\prime +6y=0

    Assuming there is a solution y(x)=\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} , substitute and obtain a formula for a_{k}. Your answer should have the form y(x)=a_{0}(1-3x^{2}) +a_{1}\!\left( x-\dfrac{1}{3}x^{3}\right)\qquad a_{0},~a_{1} \hbox{ real numbers}

See Student Solutions Manual.

  1. If the series \sum\limits_{k=0}^{\infty }a_{k}3^{k} converges, show that the series \sum\limits_{k=1}^{\infty }ka_{k}2^{k} also converges.

  1. Find the interval of convergence of the series \sum\limits_{k=1}^{\infty }\dfrac{(x-2)^{k}}{k(3^{k})}.

-1\leq x<5

  1. Let a power series S(x) be convergent for \vert x\vert <R. Assume that S(x)=\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k} with partial sums S_{n}(x)=\sum\limits_{k\,=\,0}^{n}a_{k}x^{k}. Suppose for any number \varepsilon >0, there is a number N so that when n>N, \vert S(x)-S_{n}(x) \vert <\dfrac{\varepsilon }{3} for all \vert x\vert <R. Show that S(x) is continuous for all \vert x\vert <R.

  1. Find the power series in x, denoted by f(x), for which f^{\prime \prime} (x) + f(x) =0 and f(0) =0, f^\prime (0) =1. What is the radius of convergence of the series?

\sum\limits_{k=0}^{\infty}{\dfrac{(-1)^{k}x^{2k+1}}{(2k+1)!}}; R=\infty

  1. The Bessel function of order m of the first kind, where m is a nonnegative integer, is defined as J_{m}(x) =\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k} \dfrac{1}{(k+m) !\, k!}\left( \dfrac{x}{2}\right) ^{2k+m}

    Show that:

    1. (a) J_{0}(x) =x^{-1}\dfrac{d}{dx}(xJ_{1}(x) )
    2. (b) J_{1}(x) =x^{-2}\dfrac{d}{dx}(x^{2}J_{2}(x) )