489
Evaluate \(\omega \wedge \eta\) if
Prove that \begin{eqnarray*} &&(a_1{\it {\,d} x}\, + a_2\, {\it dy} + a_3 {\,d} z) \wedge (b_1\,{\it dy}\, {\,d} z + b_2 {\,d} z\,{\it {\,d} x} + b_3 {\it {\,d} x}\,{\it dy})\\[3pt] &&\quad = \left(\sum_{i=1}^3 a_ib_i\right)\!\!{\it {\,d} x}\,{\it dy}\,{\,d} z. \end{eqnarray*}
Find \({\,d}\omega\) in the following examples:
Let \(C\) be the line segment from the point \((-2,0,1)\) to \((3,6,9)\). Let \(\omega_1 = y\, {\it dx} + x\, {\it dy} + xy\, dz\), \(\omega_2 = z\, {\it dx} + y\, {\it dy} + 2x\, dz\), and \(f(x,y,z) = xy\). Calculate the following:
Let \(C\) be parameterized by \(c(t) = (t^2 + 4t , \, t + 1), t \in [0, \pi]\). Let \(\omega_1 = y\, {\it dx} + x\, {\it dy}\), \(\omega_2 = y^2 {\it dx} + x^2 {\it dy}\), and \(f(x,y) = x\). Calculate the following: \[ {\rm (a)} \int_{C} f \omega_1 {\rm (b)} \int_{C} f \omega_2 {\rm (c)} \int_{C} \omega_1 + \omega_2 \]
Let \({\bf V}\colon\, K\to {\mathbb R}^3\) be a vector field defined by \({\bf V}(x,y,z) = G(x,y,z){\bf i} + H(x,y,z){\bf j} + F(x,y,z){\bf k}\), and let \(\eta\) be the 2-form on \(K\) given by \[ \eta = F {\it {\,d} x}\, {\it dy} + G\, {\it dy}\, {\,d} z + H {\,d} z\, {\it {\,d} x}. \]
Show that \({\,d} \eta = (\hbox{div }{\bf V})\,{\it {\,d} x}\, {\it dy}\, {\,d} z\).
If \({\bf V} = A(x,y,z){\bf i} + B(x,y,z){\bf j} + C(x,y,z){\bf k}\) is a vector field on \(K \subset {\mathbb R}^3\), define the operation \({\rm Form}_2\): \(\hbox{Vector Fields} \to \hbox{2-forms}\) by \[ \hbox{Form}_2({\bf V}) = A\, {\it dy}\, {\,d} z + B {\,d} z\, {\it {\,d} x} + C {\it {\,d} x}\, {\it dy}. \]
Using the differential form version of Stokes’ theorem, prove the vector field version in Section 8.3. Repeat for Gauss’ theorem.
Interpret Theorem 16 in the case \(k = 1\).
Let \(\omega = (x+ y){\,d} z + (y + z)\,{\it {\,d} x} + (x+ z)\, {\it dy}\), and let \(S\) be the upper part of the unit sphere; that is, \(S\) is the set of \((x,y,z)\) with \(x^2 + y^2 + z^2 = 1\) and \(z \ge 0\). \(\partial\! S\) is the unit circle in the \(xy\) plane. Evaluate \(\int_{\partial S}\omega\) both directly and by Stokes’ theorem.
Let \(T\) be the triangular solid bounded by the \(xy\) plane, the \(xz\) plane, the \(yz\) plane, and the plane \(2x + 3y + 6z = 12\). Compute \[ \intop\!\!\!\intop\nolimits_{{\partial\! T}} F_1\, {\it {\,d} x}\, {\it dy} + F_2\, {\it dy}\, {\,d} z + F_3 {\,d} z\, {\it {\,d} x} \] directly and by Gauss’ theorem, if
Evaluate \({\intop\!\!\!\intop}_S\omega\), where \(\omega = z {\it {\,d} x}\, {\it dy} + x\, {\it dy}\, {\,d} z + y {\,d} z\, {\it {\,d} x}\) and \(S\) is the unit sphere, directly and by Gauss’ theorem.
Let \(R\) be an elementary region in \({\mathbb R}^3\). Show that the volume of \(R\) is given by the formula \[ v(R) = \frac13 \intop\!\!\!\intop\nolimits_{{\partial\! R}} x\, {\it dy}\, {\,d} z + y {\,d} z\, {\it {\,d} x} + z\, {\it {\,d} x}\, {\it dy}. \]
490
In Section 4.2, we saw that the length \(l({\bf c})\) of a curve \({\bf c}(t) = (x(t), y(t), z(t)), a\le t \le b\), was given by the formula \[ l({\bf c}) = \int d {\bf s} = \int_a^b \Big(\frac{{\,d} s}{{\it {\,d} t}}\Big) \,{\it {\,d} t} \] where, loosely speaking, \((d s)^2 = (d x)^2 + (d y)^2 + (d z)^2\), that is, \[ \frac{{\,d} s}{{\it {\,d} t}} = \sqrt{\Big(\frac{{\it {\,d} x}}{{\it {\,d} t}}\Big)^2 + \Big(\frac{{\it dy}}{{\it {\,d} t}}\Big)^2 + \Big(\frac{{\,d} z}{{\it {\,d} t}}\Big)^2}. \]
Now suppose a surface \(S\) is given in parametrized form by \({\Phi}(u,v) = (x(u,v),y(u,v), z(u,v))\), where \((u,v)\in D\). Show that the area of \(S\) can be expressed as \[ A(S) = \intop\!\!\!\intop\nolimits_{D}{\,d} S, \] where formally \((d S)^2= (d x \wedge {\it dy})^2 + (d y \wedge{\,d} z)^2 + (d z \wedge {\it {\,d} x})^2\), a formula requiring interpretation. [HINT: \[ {\it {\,d} x} = \frac{\partial x}{\partial u}{\,d} u + \frac{\partial x}{\partial v}{\,d} v, \] and similarly for \({\it dy}\) and \({\,d} z\). Use the law of forms for the basic 1-forms \({\,d} u\) and \({\,d} v\). Then \({\,d} S\) turns out to be a function times the basic 2-form \({\,d} u{\,d} v\), which we can integrate over \(D\).]