\(x=r\cos\theta\) | \(r=\sqrt{x^2+y^2}\) |
\(y = r\sin\theta\) | \(\tan\theta=\frac{y}{x}\quad (x\neq 0)\) |
631
Curve | Polar equation |
Circle of radius \(R\), center at the origin | \(r = R\) |
Line through origin of slope \(m=\tan\theta_0\) | \(\theta = \theta_0\) |
Line on which \(P_0=(d,\alpha)\) is the point closest to the origin | \(r = d\sec(\theta-\alpha)\) |
Circle of radius \(a\), center at \((a,0)\) \((x-a)^2 + y^2 = a^2\) | \(r = 2a\cos\theta\) |
Circle of radius \(a\), center at \((0,a)\) \(x^2 + (y-a)^2 = a^2\) | \(r = 2a\sin\theta\) |