69
Calculate the dot product of \({\bf x}=(1,-1,0,2)\in {\mathbb R}^4\) and \({\bf y}=(1,2,3,4)\in{\mathbb R}^4\).
In \({\mathbb R}^n\) show that
Interpret these results geometrically in terms of the parallelogram formed by x and y.
Verify the Cauchy–Schwarz inequality and the triangle inequality for the vectors in Exercises 3 to 6.
\({\bf x} = (2,0,-1), {\bf y} = (4,0,-2)\)
\({\bf x} = (1,0,2,6), {\bf y} = (3,8,4,1)\)
\({\bf x} = (1,-1,1, -1,1), {\bf y} =(3,0,0,0, 2)\)
\({\bf x}=(1,0,0,1),{\bf y}=(-1,0,0,1)\)
Let \(\textbf{v}, \textbf{w} \in \mathbb{R}^n\). If \( \| \textbf{v} \| = \| \textbf{w} \|\), show that \(\textbf{v} + \textbf{w}\) and \(\textbf{v} - \textbf{w}\) are orthogonal.
Suppose \(T\) is a triangle formed by placing three points on a circle, two of which lie on the circle’s diameter. Use the previous problem to show \(T\) is a right triangle.
Compute \(AB, \hbox{det } A, \hbox{det } B, \hbox{det } (A B)\), and \(\hbox{det } (A+B)\) for \[ A = \Bigg[\begin{array}{@{}c@{\quad}r@{\quad}c@{}} 1 & -1 & 0 \\ 0 & 3 & 2 \\ 3 & 1 & 1 \end{array} \Bigg] \qquad \hbox{and } \qquad B = \Bigg[\begin{array}{@{}r@{\quad}c@{\quad}r@{}} -2 & 0 & 2 \\ -1 & 1 & -1 \\ 1 & 4 & 3 \end{array} \Bigg]. \]
Compute \(AB, \hbox{det } A, \hbox{det } B, \hbox{det } (AB)\), and \(\hbox{det } (A+B)\) for \[ A = \Bigg[\begin{array}{@{}c@{\quad}c@{\quad}r@{}} 3 & 0 & 1\\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{array} \Bigg] \qquad \hbox{and } \qquad B = \Bigg[\begin{array}{@{}c@{\quad}c@{\quad}r@{}} 1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{array} \Bigg]. \]
Determine which of the following matrices are invertible: \[ A=\left[ \begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 3 & 3 \\ \end{array} \right] \quad B=\left[ \begin{array}{ccc} 0 & 0 & 3 \\ -1 & 1 & 19 \\ 2 & 3 & \pi \\ \end{array} \right] \quad C=\left[ \begin{array}{cc} 1 & 1 \\ 1 & 1 \\ \end{array} \right] \]
For matrix \(A\) in the previous problem, find a nonzero \(\textbf{x} \in \mathbb{R}^3\) such that \(A\textbf{x}=\textbf{0}\).
Use induction on \(k\) to prove that if \({\bf x}_1, \ldots , {\bf x}_k \in {\mathbb R}^n\), then \[ \|{\bf x}_1 + \cdots + {\bf x}_k\| \le \|{\bf x}_1 \| + \cdots + \|{\bf x}_k\|. \]
Using algebra, prove the identity of Lagrange: For real numbers \(x_1, \ldots , x_n\) and \(y_1, \ldots , y_n.\) \[ \bigg( \sum_{i=1}^n x_i y_i \bigg)^2\! = \bigg( \sum_{i=1}^n x_i^2 \bigg) \bigg( \sum_{i=1}^n y_i^2 \bigg) {-} \sum_{i < j} (x_i y_j - x_j y_i)^2. \]
Use this to give another proof of the Cauchy–Schwarz inequality in \({\mathbb R}^n\),
Prove that if \(A\) is an \(n \times n \) matrix, then
In Exercises 16 to 18, \(A\),\(B\), and C denote \(n \times n\) matrices.
Is \(\hbox{det } (A+B) = \hbox{det } A + \hbox{det } B\)? Give a proof or counterexample.
Does \((A+B) (A-B) = A^2 - B^2\)?
Assuming the law \(\hbox{det } (AB) = ( \hbox{det } A)(\hbox{det } B)\), prove that det \((ABC) = ( \hbox{det } A) ( \hbox{det } B)(\hbox{det } C)\).
(This exercise assumes a knowledge of integration of continuous functions of one variable.) Note that the proof of the Cauchy–Schwarz inequality (Theorem 4) depends only on the properties of the inner product listed in Theorem 1. Use this observation to establish the following inequality for continuous functions \(f,g \colon [0,1] \to {\mathbb R}\): \[ \bigg| \int_0^1 f (x) g (x)\ \ dx \bigg| \le \sqrt{ \int^1_0 [f (x) ]^2\ \ dx} \ \sqrt{\int_0^1[ g (x)]^2\ \ dx}. \]
Do this by
70
Define the transpose \(A^T\) of an \(n \times n\) matrix \(A\) as follows: the \(ij\)th element of \(A^T\) is \(a_{ji}\) where \(a_{ij}\) is the \(ij\)th entry of \(A\). Show that \(A^T\) is characterized by the following property: For all \({\bf x,y}\) in \({\mathbb R}^n\), \[ (A^T {\bf x}) \,{\cdot}\, {\bf y} = {\bf x} \,{\cdot}\, ( A {\bf y}). \]
Verify that the inverse of \[ \Big[\begin{array} &a & b \\ c & d \end{array} \Big] \qquad \hbox{is} \qquad \frac{1}{ad- bc} \Big[\begin{array}{@{}r@{\quad}r@{}} d & -b \\ -c & a \end{array} \Big]. \]
Use your answer in Exercise 21 to show that the solution of the system \begin{eqnarray*} && ax+ by = e \\ && cx + dy =f\\[-21.5pt] \end{eqnarray*} is \[ \Big[\begin{array}{c} x \\ y \end{array} \Big] = \frac{1}{ad-bc} \Big[\begin{array}{@{}r@{\quad}r@{}} d & -b \\ -c & a \end{array} \Big] \Big[\begin{array}{c} e \\ f \end{array} \Big]. \]
Assuming the law \(\hbox{det } (AB) = ( \hbox{det } A) ( \hbox{det } B)\), verify that \((\hbox{det } A) (\hbox{det } A^{-1})=1\) and conclude that if \(A\) has an inverse, then \(\hbox{det } A \ne 0\).
Find two \(2 \times 2\) matrices \(A\) and \(B\) such that \(AB=0\) but \(BA \neq 0\).