533
An n following a page reference indicates the information is found in a note.
2 × 2 matrix, 31, 63
3 × 3 matrix, 31–
ε’s and δ’s limits, 99–
In, 66
n-dimensional Euclidian space, 60
n-space vectors, 60–
ℝn, 2
x axis, 1
x coordinate, 1
x-simple regions, 283, 287, 428, 430
y axis, 1
y coordinate, 2
y-simple domain, 340
y-simple regions, 283, 286, 287, 428–
z axis, 1
z coordinate, 2
0-
1-
2-
3-
symbols, xviii
absolute maximum, 180, 192, 193
absolute minimum, 180, 192, 193
absolute value, xxiii
acceleration, 217–
action, principle of, 166–
action at a distance, 243, 419
additive inverse, 3
adiabatic process, 375
affine approximation, 108–
Alexandov, 417
algebra of forms, 483–
al-
Ampère’s law, 372, 408, 452, 472
analytic function, 166
Andromeda galaxy, 419
angle between two vectors, 22–
angular momentum, conservation of, 450
angular velocity vector, 250
anticommutativity, 483
Apollonius of Perga, xv
approximations, 158
Arabian mathematics, xvii–
Archimedes, xvi, xix, 266, 333, 389
arch length
definition, 228, 231
differential, 230–
formula justification, 232–
function, 232
reparametrization, 234
area
curl as circulation per unit area, 445–
Green’s theorem, 433–
surfaces, 383–
Argand, 46
Aristarchus of Samus, xix
Aristotle, xvi
Ars Magna [the Great Art] (Cardano), 44
associativity, 3, 46n1, 67, 483
average value, 357
average value of a function, 329–
Babylonian mathematics, xiii–
ball, volume of, 326
basic 1-
basic 2-
basic 3-
bearing, 30
Bentley, Richard, 419
Bernoulli, Jacob, 52
Bernoulli, Johann II, 155, 167, 358, 419
best linear approximation, 110
binormal vector, 235
bonded function
definition, 271
integratability, 274
bordered Hessian determinant, 197, 198, 199
bound vectors, 6
boundaries, 90–
boundary curve, 440
boundary points, 90, 91
boundary regions, 283
bounded set, 180
brachistrochrone, 358
Brahe, Tycho, xx
Bunyakovskii, 61n4
Buys-
C1, 114
calculus of variations, 358
capped cylinder, 451
Cardano, Gerolamo, 44, 45
Cartesian coordinates, 1, 2
Cartesian product, 263
Catoptrica (Euclid), xv
534
Cauchy, Augustin-
Cauchy–
Cauchy–
Cauchy–
Cavalieri, Bonaventura, 266
Cavalieri’s principle, 265–
CBS (Cauchy–
center of gravity, 399
center of mass, 330–
centripetal force, 221
chain rule
described, 124, 126–
as differentiation rules, 218
example, 153, 156
first special case, 127–
implicit function theorem and surface, 206
Lagrange multiplier method, 186
second special case, 128–
Stokes’ theorems and, 441
vector quantities and, 448
change of variables formula
applications, 329–
cylindrical coordinates, 324
described, 307–
double integrals, 319
Gaussian integral, 322–
polar coordinates, 320–
spherical coordinates, 325–
triple integrals, 323–
change of variables theorem, 314–
changing the order of integration, 289–
charge density, 472
chemical equation, 4
circular orbit, 220–
circulation, 373, 446
circulation and curl, 445–
class C1 functions, 114
class C2 functions, 150
class Ck, 237
Clifford, W. K., 351, 419
closed curve, 368
closed interval, xxiii
closed set, 180
closed surface, 452
Cobb–
coefficients, matrix of, 195n12
commutative, 66
complex numbers, 45–
component curves, 370
component functions, 117
components, 1, 4
component scalar fields, 237
composition, 99
conductivity, 238
cone, 379, 385, 392
conformal parametrization, 399, 423
conical refraction, 46
conic sections, xiv
conservation of angular momentum, 450
conservation of energy, 240
conservative fields
definition, 453
physical interpretation, 455–
planar case, 458–
conservative vector field, 453
constant multiple rule, 125
constant vector field, 491
constrained extrema, 185–
LaGrange multiplier method for several constraints, 191–
second derivative test, 197–
continuity, 88–
of compositions, 99
definition, 97
open sets and, 88–
theorems, 113–
continuous functions, 95–
conversion of energy, 240
coordinates, 1–
Copernicus, Nicolaus, xvi, xix
Coulomb’s law, 239, 243, 409
Cramer, 34
Cramer’s rule, 35
Crick, Francis, 418
critical points, 168, 177, 181, 182, 186, 198
cross product, 31, 35–
cross product rule, 218
cross-
cross section of a torus, 391
cubic equations, 44
curl
as circulation per unit area, 445–
definition, 249–
divergence, 253
gradients, 252
rotational flow, 251
rotations and, 250–
scalar curl, 252–
curvature
definition, 355
hemisphere, 415–
on a path, 235
planes, 415
of surfaces, 414–
surfaces of constant, 417, 418
total curvature, 414
535
curves, 116–
components, 370
integral of 1-
knotted, 355
line integrals over, 368–
piecewise, 229
planar, 353–
total curvature, 355
cyclicly permuting, 36
cyclist, 374
cycloid, 119
cycloidal path, 121
cylinder, 270, 451
cylindrical coordinates
change of variables, 324
described, 52–
Stokes’ theorems, 448
cylindrical hole, 392
d’Alembert, Le Rond, 155
DaVinci, Leonardo, 333
definite integral, xxv
degenerate critical point, 177
degenerate type, 176
Delaunay, 417
del Ferro, Scipione, xix, 44
del operator, 245, 256
density
charge, 472
current, 472
derivative of a function, xxiv
derivative of a k-form, 484–
derivative operator, 245
derivatives
directional, 136–
gradients, 112–
partial, 105–
properties of, 124–
Descartes, René, xix, 68
determinants
geometry of, 39–
matrix, 31–
properties of, 32–
determinant test for positive definiteness, 175
Dido, Queen of Carthage, 190
Dieterici’s equation, 133
differentiability
functions of two variables, 109
general case, 110–
tangent plane, 110
theorems, 113–
differential equations, 154
differential forms, 476–
0-
1-
2-
3-
algebra of forms, 483–
cross product and, 48n3
definition, 360
Gauss’, 487
Gauss’ theorem, 487, 488
Green’s theorem, 487
integral of 1-
integral of 2-
integral of 3-
Stokes’ theorems, 488
differentiation, 105–
differentiation of paths, 217–
Dirac, Paul, xviii
directed simple curve, 368
directional derivatives, 136–
directions of fastest increase, 137–
Dirichlet’s functional, 399
discontinuous functions, 97
discriminant of the Hessian, 176
displacement
infinitesimal, 231
vector, 27–
distance
definition, xxiii
from point to plane, 43–
between vector endpoints, 21–
distributivity, 3, 483
divergence
curls, 253
cylindrical coordinates, 448
definition, 245
Gauss’ theorem, 463–
Green’s theorem, 436–
Laplace operator, 254
physical interpretation, 246
spherical coordinates, 448, 470–
divergence-
domain, xxiv
dot product, 19–
dot product rule, 218
double helix, 418
double integrals
bonded function, 274
Cavalieri’s principle, 265–
change of variables formula, 319
changing the order of integration, 289–
Fubini’s theorem, 276–
mean value equality, 292–
mean value inequality, 292
over a rectangle, 271–
over elementary regions, 283–
reduction to iterated integrals, 267–
536
as volumes, 263–
doughnut surface, 375
dr notation for line integral, 371
economics, 196–
Egyptian mathematics, xiii–
eigenvalue, 203
eigenvector, 203
Einstein, Albert, 243, 418–
Einstein’s field equations, 420, 422
Einstein’s general theory of relativity, 418
elasticity, 155, 348
electric field, 472
Electromagnetic Theory (Heaviside), 49
elementary regions
described, 297–
double integrals over, 283–
Gauss’ theorem, 461–
Green’s theorem, 428
other types of, 299
symmetric, 300
triple integrals over, 298–
Elementary Treatises on Quaternions (Tait), 47
Elements (Euclid), xv
Elements of Vector Analysis (Gibbs), 49
ellipsoid, 391, 413
elliptic, 213
endpoints, 368
energy, conversion of, 240
energy vector field, 238
epicycles, xv, 119
epicycloid, 119
equality of mixed partials, 151, 152
Equilibrium (Archimedes), 333
equipotential surfaces, 141, 239
escape velocity, 240–
Escher, M. C., 402
Euclid, xv, xix, 236, 333
Euclidian n-space
matrices, 63–
vectors in, 60–
Eudoxus, xv
Euler, Leonhard, 45, 48, 76n1, 149, 152, 155, 187, 222, 390
Euler equations, 152
Euler’s theorems, 146
European mathematics, xviii–
exceptional points, 453
exhausting regions, 340
extrema of real-
extreme points, 168
extremum, 168
Faraday’s law, 407, 449–
Fary–
fence, Tom Sawyer’s, 354
Feynman, Richard, 222, 223–
Feynman integrals, 223
field concept, 242–
Fields medal, 356
Fior, Antonio, 44
first-
flexural rigidity, 348
flow lines, 241–
flux, 407, 408, 467–
flux per unit volume, 467–
Fontana, Nicolo, 44
force fields
gravitational, 238, 239, 240, 459
work done by, 358–
force vectors, 29
Fourier, Joseph, 154
Fourier series, 154, 281
free vectors, 6
Frenet formulas, 235
frequency, orbit, 221
frustum, 392
Fubini, Guido, 281
Fubini’s theorem, 268, 271, 276–
functions
analytic, 166
arch length, 232
average value, 329–
class C1, 114
class C2, 150
Cobb–
component, 117
continuous, 95–
definition, xxiv
differentiability, 109
graphs, 77
Green’s, 475
harmonic, 157
mappings and, 76–
one-
onto, 311–
potential, 455, 458, 475
quadratic, 172
of several variables, 76
smooth, 193
functions unbounded at isolated points, 344–
fundamental solution, 156
fundamental theorem of algebra, 45
fundamental theorem of calculus, 159, 232, 280, 430–
fundamental theorem of integral calculus, 276
537
Galileo, 153, 358
gauge freedom, 472
Gauss, Karl Friedrich, 45, 46, 408, 413, 418, 420
Gauss–
Gauss curvature, 414, 416, 417, 418, 420
Gaussian integral, 322–
Gauss’ law, 408, 468–
Gauss divergence theorem, 256
Gauss’ theorem
divergence as flux per unit volume, 467–
divergence theorem, 463–
elementary regions and boundaries, 461–
generalizing, 466–
general implicit function theorem, 207–
general second-
general vector field, 236
geodesics, 420
geometric example, 195–
La Geometrie (Descartes), 66
geometry
of determinants, 39–
real-
scalar multiplication, 3, 6, 42
theorems by vector methods, 11–
vector addition, 2–
vector subtraction, 7
geometry theorems by vector methods, 11–
geosynchronous orbit, 222
Gibbs, Josiah Willard, 48, 49, 256–
global maximum, 180–
global minimum, 180–
gradients, 112–
gradient vector field
conservative fields, 453–
described, 140–
line integrals over, 366–
graphs
cylindrical coordinates, 448
definition, xxiv
orientation, 404
real-
smooth vs. nonsmooth, 105
spherical coordinates, 448
Stokes’ theorems for, 439–
surface area, 387
surface integrals over, 394–
gravitational constant, 453
gravitational field, escaping earth’s, 240
gravitational force fields, 238, 239, 240, 459
gravitational potential, 155, 238, 334–
gravitational potential energy, 457
Greek mathematics, xiii–
Green, George, 431
Green’s identities, 475
Green’s theorem
area of region bounded by curve, 433–
correct orientation for boundary curves, 432
differential forms, 487
divergence theorem in the plane, 436–
generalizing, 432–
lemmas, 429–
overview, 427
simple and elementary regions and boundaries, 428
vector form, 434–
Gregory, James, 76n1
Halley, Edmund, xxi, xxii
halo orbits, 226
Hamilton, Sir William Rowan, xxii, 46–
Hamilton’s principle, 222, 223–
harmonic functions, 157
heat equation, 154, 155, 156
heat flux vector field, 238
Heaviside, Oliver, 48, 49
helicoid, 386, 394, 397, 417
heliocentric theory, xix
helix, 121, 352, 418
hemisphere, curvature, 415–
Hessian, 172–
Hessian matrix, 175–
higher-
higher-
Hilbert, David, 422
Hilbert’s action principle, 422
Hipparchus, xv
Hölder-
homogeneity with respect to functions, 483
homogeneous of degree, 146
Hooke, Robert, xxi
hot-
Huygens, Christian, 45, 68, 119, 390
hydrodynamic equation, 258
hyperbolic paraboloid, 80
hyperboloid, 381
hypocycloid, 119, 219, 374, 433
ideal gas law, 147
imaginary numbers, xix, 44–
implicit function theorem, 203–
538
improper integrals
exhausting regions, 340
as limits, 340–
as limits of iterated integrals, 341–
one-
in plane, 339–
incompressible fluid, 468
Indian mathematics, xvii–
induced orientation, 440, 445, 469
inequality
Cauchy–
mean value, 292
triangle, 26–
infinitesimal displacement, 231
inhomogeneouswave equation, 473
inner product, 3, 19–
integer, xxiii
integral
double, 271–
Feynman, 223
Gaussian, 322–
improper, 339–
iterated, 267–
line, 358–
oriented, 366
path, 351–
Riemann, 281
scalar functions over surfaces, 393
surface, 394–
topological invariant, 421
triple, 294–
integral curves, 241, 242
integratability, 272
integration
double integral reduction, 267–
triple integral reduction, 295, 296
integration by parts, 159, 160
intersection, xxiv
inverse function theorem, 208–
invertible matrices, 66
irrational number, xxiii
irrotational vector field, 251, 455, 457
isobar, 262
isoquant, 196
isotherms, 238
iterated integrals
Fubini’s theorem for, 342–
improper integrals as limits of iterated integrals, 341–
properties of, 272–
reduction of double integrals, 267–
iterated partial derivatives, 150–
Jacobi, 35
Jacobian determinant, 209, 315–
Kelvin’s circulation theorem, 407
Kepler, Johannes, xx, 222
Kepler’s laws of celestial motion, xx, 153, 221
kernel, 214
knotted curve, 355
Lagrange, Joseph Louis, 35, 56
Lagrange multiplier method
constrained extrema and, 185–
global maximum, 193–
global minimum, 193–
for several constraints, 191–
Laplace, Pierre-
Laplace operator, 254
Laplace’s equation, 154, 155
law of cosines, 22, 61
law of planetary motion, 222
Lebesgue, Henri, 281
left-
Leibniz, Gottfried Wilhelm, xx, xxi, 34, 45, 68, 167–
lemniscate, 327
length, vectors, 20, 21, 60
level contours, 78
level curves, 78–
level sets, 78–
level surface, 79, 138–
L’Hôpital’s rule, 100
limits
boundaries, 90–
concept of, 91–
definition, 92, 93, 99
open sets and, 88–
properties of, 94–
in terms of ε’s and δ’s, 99–
uniqueness of, 94
linear approximation, 108–
line integrals
definition, 359–
differential forms, 360
dr notation, 371
of gradient field, 366–
over curves, 368–
reparametrization, 363–
Stokes’ theorems, 442–
work done by force fields, 358–
lines
dimensionality, 17
equations of, 12–
parametrical expression, 12–
539
passing through endpoints of two vectors, 14
point-
point–
segment description, 16
Lipschitz-
Listing, J. B., 402
local extrema, 168
local maximum
definition, 168
first derivative test, 169–
second derivative test, 171–
second-
local minimum
definition, 168
first derivative test, 169–
second-
second-
Maclaurin, 34
magnetic field, 472
mappings, functions and, 76–
maps
from ℝ2 to ℝ2, 308–
definition, xxiv
images of, 310
Jacobian determinant, 315–
one-
onto, 311–
parametrized surfaces as, 376–
Marcellus, 389
mass
center of, 330–
density, 337
mathematics, xiii
matrices
2 × 2 matrix, 31, 63
3 × 3 matrix, 31–
coefficients, 195n12
determinants, 31–
general matrices, 63–
Hessian, 175–
invertible, 66
partial derivatives, 111, 130
properties of, 66–
triple product, 36, 46, 67
Maupertuis, Pierre-
Maupertuis’ principle, 166–
maximum
absolute, 180–
global, 180–
Maxwell, James Clerk, 48, 49, 256, 258
Maxwell field equations, 243, 452, 471–
Maxwell’s equations, 155
mean curvature, 415, 417
mean-
mean-
mean-
Menaechmus, xiv
The Method of Fuxions and Infinite Series (Newton), 52
method of least squares, 214, 215n16
method of sections, 80–
method of substitution, 318
Milky Way, 419
Milnor, John, 356
minimal surfaces, 423
minimum
absolute, 180–
global, 180–
local, 168
mixed partial derivatives, 150–
Möbius, A. F., 402
Möbius strip, 402
moment of a force, 51
moments of inertia, 333–
momentum, 72
Muir, T., 35
multiplication, 3, 6, 44, 46, 65n5
negative, 3
negative-
negative pressure gradient, 262
neighborhood, 90, 91, 98, 113, 205
Newton, Sir Isaac, xxi–
Newton’s law of gravitation, 141, 153, 168, 220, 238, 239, 243, 419
Newton’s mechanics, 222
Newton’s potential, 155, 158
Newton’s second law, 217–
nondegenerate critical point, 177, 179
nonsmooth graph, 105
norm of a vector, 60
normalized vectors, 21
notations, 76n1
octonians, 48n3
Oersted Hans Christian 372n6
one-
one-
one-
On Floating Bodies (Archimedes), 333
On Growth and Form (D’Arcy), 418
On the Equilibrium and Centers of Mass of Plane Figures (Archimedes), 333
540
onto maps, xxiv, 311–
open ball, 88
open disk, 88
open interval, xxiii
open sets, 88–
opposite path, 363
Optics (Euclid), xv
orbit
circular, 220–
geosynchronous, 222
halo, 226
order of integration, 289–
ordinary differential equations, 154
orientation
graphs, 404
surfaces, 401–
vector surface element of a sphere, 404
orientation-
orientation-
orientation-
orientation-
oriented integral, 366
oriented simple curve, 368
oriented surface, 401–
origin, 1
orthogonal projections, 25–
orthogonal vectors, 24, 36
orthonormal, 58
orthonormal vectors, 24
paddle wheel, 445, 455
Pappus of Alexandria, 333
Pappus’ theorem, 392
paraboloid, 300, 302
paraboloid of revolution, 79
parallelepiped, 40–
parallelogram
area of, 385
change of variables, 320
cross product calculation, 38
parametric description, 16, 17
parallelogram law, 69
parallel planes, 42–
parametrized by arc length, 235
parametrized surface
definition, 377
as mappings, 376–
regular surface, 378–
tangent plane to, 379–
tangent vectors, 378
parametrized surfaces
graph restrictions, 375–
Stokes’ theorems, 444–
surface integrals, 410–
parametrization, 117, 309, 362, 368, 372, 378–
partial derivatives
described, 105–
equality of mixed partials, 151–
iterated partial, 150–
matrix of, 111
mixed partial, 150
partial differential equations, 153–
Pascal, Blaise, 119
path, 116–
differentiation, 217–
integration of secular functions over, 351–
piecewise smooth, 229, 230
path-
path-
path integral, 351–
Peano, Giuseppe, 183
perpendicular vectors, 24
Philosophiae Naturalis Principia Mathematica (Newton), 335
physical applications of vectors, 27–
piecewise curve, 229
Pierce, J. M., 49
planar curves, 353–
Planck, Max, 222, 225
planes
curvature, 415
dimensionality, 17
equations of, 41–
parallel, 42–
parametric description, 17
parametrization, 375, 376
path in, 117
three coordinate planes, 17
Plato, xiv–
Poincaré, 226
point to plane, distance from, 43–
Poisson’s equation, 155, 475
polar coordinates, 52, 53, 131, 320–
polarization identity, 69
Pope, Alexander, xxi
position vector, 371
positive-
positive orientation, 440
potential, 475
potential equation, 155
potential function, 455, 458, 475
potential temperature, 147
Poynting vector, 475
principal normal vector, 235
541
Principia (Newton), xxi, xxii
principle of least action, 167–
“Principles of the Motions of Fluids” (Euler), 155
product rule, 125
properties
continuous functions, 98
derivatives, 124–
determinants, 32–
iterated integrals, 272–
of limits, 94–
triple integrals, 295–
proper time of a path, 235
property of the unit element, 3
property of zero, 3
Ptolemaic model of planetary motion, 166
Ptolemaic theory, xv
Ptolemy of Alexandria, xv, xvi
Pythagorean theorem, 20
quadratic approximations, 158, 164, 165
quadratic equations, 44–
quadratic functions, 172
quaternions, 46–
quotient rule, 125
radio waves, 471–
range, xxiv
rational number, xxiii
real-
extrema, 166–
geometry, 76–
regular differentiable path, 219
regular partition, 271
regular surface, 378–
relative extrema, 168, 188
relativistic triangle inequality, 236
remarkable theorems, 418
reparametrization, 363–
restaurant plans, 412
Riemann, Bernhard, 45, 281, 399n11, 418, 420, 476
Riemann integral, 281
Riemann sum, 263–
right-
right-
Rodrigues, Olinde, 49
rotary vector field, 237
saddle, 80, 83
saddle point, 168, 170, 177
saddle-
scalar curl, 252–
scalar field, 236
scalar multiplication, 3, 6, 42, 44
scalar multiplication rule, 218
scalar part, 47, 48
scalar quantity, 46
scalar-
Schwarz, 61n4
second-
sections, method of, 80–
semimajor axis, 195
semiminor axis, 195
sets
bounded, 180
closed, 180
level, 78–
open, 88–
simple closed curve, 368, 369
simple curve, 368
simple regions, 283, 287
single-
single-
sink, 468
slice method—
smooth function, 193
smooth graph, 105
smooth path, 181
smooth surface, 378
Snell’s law, 51
soap bubble, 390–
soap film surfaces, 417, 423
solid ellipsoid, 347
solid of revolution, 270
solutions, existence of, 190–
space, path in, 117
space analysis, 68
special implicit function theorem, 203–
speed, 120, 220, 230
sphere, 411, 445
spherical coordinates
change of variables, 325–
described, 54–
divergence, 470–
Stokes’ theorems, 448
standard basis vectors, 8–
steady flow, 237
Stokes’ theorems
conservative fields, 453, 455
curl as circulation per unit area, 445–
differential forms, 488
for graphs, 439–
parametrized surfaces, 444–
streamlines, 241
strictly subharmonic relative, 213
542
Stokes’ theorem
Faraday’s law, 449–
reorientation applications, 449
strong maximum principle, 439
strong minimum principle, 439
subharmonic function, 439
subset, xxiii
sum, 2
sum, Riemann, 263–
sum rule, 125, 218
superharmonic function, 439
surface area
definition, 384–
graph surface area, 387
surfaces of revolution, 387–
surface integrals
independence of parametrization, 405
over graphs, 394–
physical interpretation, 406–
scalar integral relationship, 405–
summary of formulas, 410–
of vector fields, 400–
surfaces
curvature of, 414–
described, 78–
implicit function theorem and, 205–
integral of 2-
integrals of scalar functions over, 393–
symmetric elementary regions, 300
Tait, Peter Guthrie, 47, 48
tangent line to a path, 122–
tangent plane, 110, 139, 379–
tangent vectors, 120, 129, 378
target, xxiv
Tartaglia, Niccolo, xix, 44, 45, 333
Tartaglia–
Taylor series, 164
Taylor’s theorem, 158–
temperature, 147, 154, 155, 375, 412
tetrahedron, 286, 287
Thales of Miletus, xiv
theorema egregium (remarkable theorem), 418
theorems
change of variables, 314–
Euler’s, 146
Fary–
Fubini’s, 268, 271, 276–
fundamental theorem of algebra, 45
fundamental theorem of calculus, 159, 232, 280, 430–
fundamental theorem of integral calculus, 276
Gauss,’ 461, 463–
Gauss–
general implicit function, 207–
Green’s, 428–
implicit function, 203–
inverse function, 208–
Kelvin’s circulation, 407
mean-
Pappus,’ 392
Pythagorean, 20
remarkable, 418
special implicit function, 203–
Stokes,’ 250, 407
and surfaces, 205–
Taylor’s, 158–
The Theory of Determinants in the Historical Order of Development (Muir), 35
theory of mirrors, xv
thermodynamic path, 375
The Theodicy (Leibniz), 167
third-
Thomae, Karl J., 281
Thompson, D’Arcy, 418
three-
Tom Sawyer’s fence, 354
topological invariant, 421
torsion, 235
torus, 375, 391, 421, 476
total curvature, 355, 414
traces out, 117
trajectories, 26
transformations, xxiv
Treatise on Electricity and Magnetism (Maxwell), 48, 256
triangle inequality, 26–
triple, 2, 3
triple integral
change of variables formula for, 323–
definition, 294–
over elementary regions, 298–
properties, 295–
reduction to integrated integrals, 295, 296
triple product, 36, 46, 67
twice continuously differentiable, 150
unbound regions, 345
unicellular organisms, 418
union, xxiii
unit ball, 298, 328
unit cube, 462
unit disk, 283, 284
unit speed, 235
unit sphere, 392, 403
unit tangent, 235
unit vectors, 21, 58
543
Vandermonde, 35
van der Waals gas, 375
vector analysis, 68
Vector Analysis (Wilson), 49
vector fields
basic identities of vector analysis, 254–
concept of, 236–
conservative fields, 453–
curl, 249–
definition, 236
divergence, 245–
flow lines, 241–
general, 236
gradient, 140–
integral curves, 241, 242
integration of over paths, 358–
Laplace operator, 254
rotary, 237
surface integrals, 400–
types of, 236, 237
vector joining two points, 10–
vector methods, geometry theorems by, 11–
vector moment, 51
vector operations, geometry of, 4–
vector part, 47, 48
vector product, 35, 44
vectors
addition, 2–
bound, 6
definition, 4, 46
displacement, 27–
force, 29
free, 6
length, 20, 21
normalized, 21
orthogonal, 24, 36
orthonormal, 24
perpendicular, 24
physical interpretation, 5
scalar multiplication, 3, 6, 42
subtraction, 7
unit, 21, 58
velocity, 28
zero, 29
vector standard basis, 8–
vector-
velocity field V, 237
velocity vector, 28, 120, 122, 123, 129
Watson, James, 418
wave equation, 155
wedge product, 483
Weierstrass, 190–
Wente, Henry, 417
Wessel, 46
Wiener, Norbert, 215n16
Wilson, E. B., 49, 257
Wimsey, Peter, 190
work, 30, 358–
Wren, Sir Christopher, xxi
Young’s modulus of elasticity, 348
zero element, 3
zero vector, 29
544