In parts (a) through (d) below, each iterated integral is an integral over a region \(D\). Match the integral with the correct region of integration.
Evaluate the following triple integral: \[ \intop\!\!\!\intop\!\!\!\intop\nolimits_{W} \sin x \, {\it dx}\, {\it dy}\, {\it dz}, \] where \(W\) is the solid given by \(0 \leq x \leq \pi\), \(0 \leq y \leq 1\), and \(0 \leq z \leq x\).
In the next four exercises, perform the indicated integration over the given box.
303
\(\displaystyle\int\!\!\!\int\!\!\!\int_B x^2{\it dx}\,{\it dy}\,{\it dz},B=[0,1]\times [0,1]\times [0,1]\)
\(\displaystyle\int\!\!\!\int\!\!\!\int_B e^{-xy}\,y\,{\it dx}\,{\it dy}\,{\it dz},B=[0,1]\times [0,1]\times [0,1]\)
\(\displaystyle\int\!\!\!\int\!\!\!\int_B (2x+3y+z)\,{\it dx}\,{\it dy}\,{\it dz},B=[0,2]\times [-1,1]\times [0,1]\)
\(\displaystyle\int\!\!\!\int\!\!\!\int_B ze^{x+y}{\it dx}\,{\it dy}\,{\it dz},B=[0,1]\times [0,1]\times [0,1]\)
In the next four exercises, describe the given region as an elementary region.
The region between the cone \(z=\sqrt{x^2+y^2}\) and the paraboloid \(z=x^2+y^2\)
The region cut out of the ball \(x^2+y^2+z^2\leq 4\) by the elliptic cylinder \(2x^2+z^2=1\); that is, the region inside the cylinder and the ball
The region inside the sphere \(x^2+y^2 +z^2=1\) and above the plane \(z=0\)
The region bounded by the planes \(x=0,y=0, z=0, x+y=4,\) and \(x=z-y-1\)
Find the volume of the region in the next four exercises.
The region bounded by \(z=x^2+y^2\) and \(z=10-x^2-2y^2\)
The solid bounded by \(x^2+2y^2=2,z=0\), and \(x+y+2z=2\)
The solid bounded by \(x=y,z=0,y=0,x=1,\) and \(x+y+z=0\)
The region common to the intersecting cylinders \(x^2+y^2\leq a^2\) and \(x^2+z^2\leq a^2\)
Evaluate the integrals in the next ten exercises.
\(\displaystyle\int^1_0\int^2_1\int^3_2 \cos\, [\pi(x+y+z)]\,{\it dx}\,{\it dy}\,{\it dz}\)
\(\displaystyle\int^1_0\int^x_0\int^y_0 (y+xz)\,{\it dz}\,{\it dy}\,{\it dx}\)
\(\displaystyle\intop\!\!\!\intop\!\!\!\intop\nolimits_W (x^2+y^2+z^2)\,{\it dx}\,{\it dy}\,{\it dz}\); \(W\) is the region bounded by \(x+y+z=a\) (where \(a > 0\)), \(x=0,y=0\), and \(z=0\).
\(\displaystyle\intop\!\!\!\intop\!\!\!\intop\nolimits_W z\,{\it dx}\,{\it dy}\,{\it dz}\); \(W\) is the region bounded by the planes \(x=0,y=0,z=0,z=1,\) and the cylinder \(x^2+y^2=1\), with \(x\geq 0,y\geq 0\).
\(\displaystyle\intop\!\!\!\intop\!\!\!\intop\nolimits_W x^2\cos z{\it dx}\,{\it dy}\,{\it dz}\); \(W\) is the region bounded by \(z=0,z=\pi,y=0, y=1,x=0,\) and \(x+y=1\).
\(\displaystyle\int^2_0\int^x_0\int^{x+y}_0{\it dz}\,{\it dy}\,{\it dx}\)
\(\displaystyle\intop\!\!\!\intop\!\!\!\intop\nolimits_W(1-z^2)\,{\it dx}\,{\it dy}\,{\it dz}\); \(W\) is the pyramid with top vertex at \((0,0,1)\) and base vertices at \((0,0,0)\), \((1,0,0)\), \((0,1,0),\) and \((1,1,0)\).
\(\displaystyle\intop\!\!\!\intop\!\!\!\intop\nolimits_W(x^2+y^2)\,{\it dx}\,{\it dy}\,{\it dz}\); \(W\) is the same pyramid as in Exercise 21.
\(\displaystyle\int^1_0\int^{2x}_0\int^{x+y}_{x^2+y^2}{\it dz}\,{\it dy}\,{\it dx}.\)
For the regions in the next four exercises, find the appropriate limits \(\phi_1(x),\phi_2(x),\gamma_1(x,y),\) and \(\gamma_2(x,y),\) and write the triple integral over the region W as an iterated integral in the form \[ \intop\!\!\!\intop\!\!\!\intop\nolimits_{W} f {\,d} V=\int^b_a \bigg\{ \int^{\phi_2(x)}_{\phi_1(x)}\bigg[\int^{\gamma_2(x,y)}_{\gamma_1(x,y)} f(x,y,z)\,{\it dz}\bigg]\,{\it dy}\bigg\}\,{\it dx}. \]
304
\(W=\{(x,y,z)\mid \sqrt{x^2+y^2}\leq z\leq 1\}\)
\(W=\{(x,y,z)\mid \frac{1}{2}\leq z\leq 1\) and \(x^2+y^2+z^2\leq 1\}\)
\(W=\{(x,y,z)\mid x^2+y^2\leq 1, z\geq 0\) and \(x^2+y^2+z^2\leq 4\}\)
\(W=\{(x,y,z)\mid |x|\leq 1, |y|\leq 1, z\geq 0\) and \(x^2+y^2+z^2\leq 1\}\)
Show that the formula using triple integrals for the volume under the graph of a positive function \(f(x,y),\) on an elementary region \(D\) in the plane, reduces to the double integral of \(f\) over \(D\).
Let \(W\) be the region bounded by the planes \(x=0,y=0,z=0,x+y=1,\) and \(z=x+y\).
Let \(f\) be continuous and let \(B_\varepsilon\) be the ball of radius \(\varepsilon\) centered at the point \((x_0,y_0,z_0)\). Let vol (\(B_{\varepsilon}\)) be the volume of \(B_\varepsilon\). Prove that \[ \lim_{\varepsilon \rightarrow 0} \frac{1}{{\rm vol}\, (B_{\varepsilon})}\intop\!\!\!\intop\!\!\!\intop\nolimits_{B_{\varepsilon}} f(x,y,z){\,d} V=f(x_0,y_0,z_0). \]