Chapter 1. Chapter 29 (Chapter 9 Macro)

Step 1

Work It Out
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

What happens to the interest rate in the market for loanable funds if the media convinces the public that the world will end in the next year?

UqpEE27caHukX7HZntrm2gtnth0P1he7LakTbkOlH1ppqm69rN7WwiG7cKn/M5VmqpM1pQRUXcevSf9vbC/ij9ZMp1Y22QqmkCNybmCgSKnCm24xLmGT43rhw7hMT5GVp4not39gNmjRj87zN76K0au3G0MgFsjET2msN0QaqBez2BgseOZNJ+D4ozPCZ9sSdS017XIj+FI6W4mjxNdShmZo3emtOyQPD+loHnP4MfyJf7cz87TgbWgVgZFpnZPGik0/bvXaMTW6+yD/R3dyw/AvorSvADq2jx0J7pHxTnUS7TQy5rUewNHsJPqcJDUsNN1RvLgQgCcM4Qu8AmDfc31K+9GTuChJCsD6MZE7DUeHlbKYX3WtQ4P4iC0dTIcTvJ9HWe0sBqhOWc3gClVqqpC90V3lCOvlkSlROm7q3SGhT9GSI9rnYue7r4NT2AjdV1h40wVoRZNHpW7R3Rc3OhbTFcOIRywI4nsxv9eiaP13PePJRwtdOcFbQywfs5GiK7jCSvZ6+Y1rABfGKsWVxR7k/3/Y9+rKEV9fgPN6UaiNyU3bkvlp57DmupImnd9UvrBCWT/w2t169OxpgdvN8MQOBQmB2RYPe25bxCPD5P1ksHYeRo8L1HBUFse7cApmCJF9K/xuQ8LM1/ZYqWF1nwOPc1+mcJnfTCwFN4WidFSB51XV5pReh/6PcBnGJ1S0vaBH2EVWKegoNxxG5G0PYxzuwGRLqPV6uxpJAh1HAyPzqOxYj2V3buuUKMfnRPWYlWneZwJToitOAc43f8pkt9EViYoIennkZAePiaxbjftHetowLgnQYxA/DMS1jzeIDWKND+GvjBupq0S38IkFu5WXmxRasdhYoi0GFi6Vj+JzUY5RMZjl61zOWxMJC/QNtkCIHnsSk3atnbMSqZz0nN0hXoyjH9tCQHJEDibE7CwiqJ9vrC6kDoFUaCXtbWVRipXOVew5NCgtSDlid8ue5ngS/Fx1BdyzZcfhY9HNQx0RSUcWRYpUcA7+Ph8d9IcucYNVsPnQpsT2rCGIlH1tQE+MFoxc8ZgCyodMp+zNUbrY7zQSaElZHoesAU8zIjtsJEAykXQOugLXnwCEUX59kBSWTEe5mBFGiBlltH6aaYgkh3w3CxpeOauur4nzdlqNPGCaKYY1Z26lzGe0gCZgra1RkgVK6shLL5xwqhA4Go5hEL8NJePC4hf+GSBXLrSeZ5vgxds+i30hNvI/CdMi/wS6BJmJTXQ2E+hDP4PDRjWeRZsfK8xfOqy+AlWkvDBegbYtuN/CVHk2ZSycK2nYh/mDdpNfnIrPGtE9vjCDozGL1mvtFGaH7/JKJ7CT4Ko6NybPxB2qZCMUN3DotVH4EUkY0I9ngIiYa/ROizvcTbZHfFDDH9FHPw8l7V7gFt9vynxv8JX+xzg5Do8aWggePBHNtPms5WEVNBq2/mFXJKUd8X3DONUAXXcQ8YAXTSb4GKV9kBGZ5ulJvNwWHMGr8C6cf4KDKsXUNJcUFcrpY/IOmURKBSwOUdrxecoFJDHG0HTTkYkyxBZoLXmmer3KN0LcK3zN3ThKe66HcSQnryETnMH5OaI1NBtIiIrk0SlETibUb9fzNw+scSxNWdX9ZbLR47Ytol2LqREwadBXOUi4kVWwxG2J8Zcg7M1/J+MQc7J/YGLGfD2k919S5rg5mdQgmIzoQRXYYkv33bUGr5EDIVqQhfIXI/cpZoagVeiB3BgOOaxra75js0X7WUdmFM7T1LA0t8Qhal8M11hqc7BPtiL+2UA6aGa4DdNb1vTF6d+AlRCSrAZWuxPi87SOinZ/bwf/MHKpFVWOR3XRhun29irxRDjq8XjuABTs4Yxz17fqQuU44PeBkfiQAH6sN0LIMD3bNmqvS59hgzB+6vo1A91fp2+qbA==

Question

ZYkjuE5TbVDWfw4uitVnmzgZTI3NuV7Dp0afkFGNBmKhuCjRXP1IupNpS8qqpiPJua2H7sDI6SX3Nv1TaxovQR/WqiZuOub4hM4+6CUTHcXRiHvLJA/RFhXjWjsVoaCC1K3VGyQrYxPmKJhUrsmW6PJm127CnqnWnPvAP0bIvhE4IQnSc5ydUKrMg4dTbOSLNMpdxuJt/tUpliphWJnII+u4sTFXJV4bup2o/01TRNiU9N9B3Q0uhL6Egdfi+KeiToGVvLUUO9sA6Q9L+iTJm4Kf0uf5MTmd6uaEH5Xo4hsdUm0pr6mhCk2w4xe2U5PaZZtl9XC2kXSbkyHdfp5GyzBW1Oq+I0oigQ16JMZo0gsu5NBXLTEyoyJgYsZv4Xyu/TbXUzS3Eb2jj+Mmpgd9Qw37m0aHzilAPofmJwJLq7KRNb2SjQbef3iWDAEllMQ2CToLvu9CprmbTplxUJ5J0UFMB9G0lhyt6NX46mHg7YnOMjYtvODdrufjVGdUHNqmA+5QMi+PVCafFYyTBW8+IhiGvSK9w5WK1l5sN3XgA8oCQi/Q6jNgsroRyp5sMzTc57sqcEZ7dewBuHdnp79mJLmRU1UjtFsl+tY21ZkkfyjisMbb0vM5CRNEoh+0bp1T+X+LYrRe2X+9BfCAnR5GZDOGz9MQmNHGBUZSqpBpmwC/9ywjao2k4aoDRw201mXC4+BJml8VvrEdL40juI3G8rXRhN3+qBd4Y6ClGWmOiA/q5P5X5lSntJmfowMUuwSlQJD56SpqXNRn1uJJZTqDl108XKjlnm+++fP+Ny+32S7v1bM10WSREmT6giiyN6aFesEvIIkcOT0cgjsI1dwFVHF3U9q5ILQcdqVxgVzFqmW4lzGj43S+S1JoX/qrIpZ1bgi013C4K0NbnYxyy3N8qdusz1lV3B6NTHUWLkPaQqMPNBYD40tX7f/uqrPSzJ+sTnTe+/70VkgNfLJBnElvOFnL1ur8B2dHLNLbHVb+Xfwj0TZh1Je2fIikzF+FaylEHtlDOXDvq7I+TVdFzX6+atDr71ZMT0pg9lEbVK5CUmhgT0BiJcL8UEQDYyuSLsmez6i1Wqw1l5dxqwLbbt6adt2GwxFVlBNwiEQKJdHskaTQai57EvD5z47ULIJH7L+EG+aUdFzhzx5AuT7Q21HwIy3ywwZAmXQAPxl1nScI2gPwo+D/xwFO54PWjg0URgAPKPh9q13oztqhp+JyP7ZKl2Aqk5qIeLmnlqmiSoUTl/ezlsd7A/2Qej1BuGSb8iesJt5FWK7sOeqeSsZYJNl77xzj695WaJnA5pNvaw9G1l1WWbvnTgytRWuX380soijEGHnnNmayraNdIbP1Zg0vepTjGIJ14Mcu4+0RkqgaWf6LHdO3GiwWGb02a+HR9TWnGiLjtp6loxJ0v1eahgpImK/eRNaRa3LugTGoafNeuEKU2iILOyFYOaJkJ6w5TC6BTHBA0fBVF0UBz9FylpYcKyuMsEbdp+aVWwBxdk3oJg3HDVmxyB41YwWjF28NXJzu5piu/TZg6gdlV2BRJPx/7yhPUs9xa9lVodI/dMAVh2XcBh9gehuH985u22VvbIL2KyDpNM8Eg7T5c1peDJRuOU20i8V6klCuTKplW82lX9fCtdzGLpoL1MNNxXgiAUKKQ1u1kI40aAnZWswwOdAq3WhMPym7k4BUWbxWAzSTa4kI7d7ce5gLG9szyBb/FCkz6IuBGbRG643MKiOZPO3I+/72v/uwyziorgphjtINwIzXEclzWdxddJFwkelOR3GRKX7Pnby8/U2qMSNdrWwv5VWkxUj2SrrIBEx60NeQRuyxYEg3hz0dRg6NKM/+Av8lfAS2cvY8fwlt2TpaODfFF8eMlpkbgl2xZeeV87RwxTuqE+K4lrfsC/1IOvN5LueOtKuc/EzyBho3cY7O9rZDnJbt6BW09Cv0MiJs8vXSvWsH7BS1jLyVMmapuVvBkY1R0cCHfqk5hECsTbkN

Question

eaHc9q70SMdws8A5UNdOP6+KiBmurgzMQ5LSNZd3lTSio2Dp1BTU868qwUTTIQwwuZl3kxqVjH2nwPM5AD8F0WgandMjb+rclOLkR0AAQ77sy+mqGo/lWG8jghU3iVmlvMzDXKjsZGoHX9DX1/sEgOQ7yUowAFmwYCqPVIn1wd6+Czs7v26tSdN0lMLT7BDsdSXW6c+Rj4RNIwu5Sm1BlCkeDBewugmScDlLrMmXuTWhIkIPcA74hWSUJwRDJs4MnQ6eltV2yQB0s+WacAFMTmM0C3tG42z3WhvRgpPqOKocpiGNnUK8S7B/8Uw7luqKDYMFvs8jWStTNdSfD8C3HiQRBBq2Y8L/JeSvqjOP2Gc463SWwKGegGpwtZXl3VFEdhfnFdQVL24nyG0F77Fbihku1czABoLPhDGnjf3/AOmDWl3CzDScZn5ERgYMoWKFz6Px9PKKRFXNYXSMoIVmLSVYkIiICWH0VzoOwKLN8VRPDqfhd/o3lID1nfFEcTbg4MthEpTvH6Rvpmh4I1xs6LA/dpfE33tuwQ1NlYMjpJ7uijeYZXjweTDacirW36kfBdm6/n+9VqVHJUqjWGGEixAD4Z4RC2ebO4F+lmOtbTpedFGnSqP/ZHKcj5eZ6/u4cbXBTu0nK1yyoqtQT6tJXnk6TIVF0+fVfhNfl/al5hO0gqsbaSGeDXK4xVgHtRvRCRcrn5n45gFw8aWPjN/jakbqDoB1ZS7IIz1AdlWHl0jZbd+cSLXBO/RcQJ0/nM1fhDLfeOwXR9IDn2H0uZGrD1jQRLTx/3xkh6EGHQHhmLIrhN4Ks8tyw9YJC3Mn3/47J61Uxw5ANGCfK8BagMhPXqlp2VbIPOyfl8FzRsurkv2HZss6NSmxdvx3w8/aK0CmSQHCG5H7sk8X5DSSR9WDOdA775+ADnJECWUMeHhTHattWtSpG1T/P8+w/Z+pKHCby5qsUsK+l749TdOEvL+txyWsPzIrMSXsffO1UpLHGoB6YJ78fSkEk02qQn3p9IKtpdexeK6SxptgXlB/AN6QMKNaEHM+IX+wmI8fvYdMLbLUj9jLRi9RaEY9JvZD8CWeeLV2t6exR3FNyiEsnCVkNHOY6trXi0Ld20qnk3w9CCGC/O2Hy4hjGZSbU4vNKSQZSZz/Seke3n2EDARr0EfMZJYly1h3meF1LearTOpH1hf8DSGBGupgvA==
1:12

Step 2

Question

What happens to the interest rate in the market for loanable funds if a pharmaceutical breakthrough increases life expectancy to 100 years?

4iltRzdalmPrzZ9y8p2P36Xy8fgZ7jjyfsIvkHp8QQ3st0GTqIXm1xWnI1g01V0qXtlIDuWwDudXaTgQbfJPal7bxGUzl8zWVzLiUmEkY43+JcfJ8U91eNkPYoGjQ2JWepvtLedosuWZVCMzDWgtaNe66J+ZmV3wCzCODAg7tvGNQB62bHu6z5u1kYHiAYnEoQThh4xe8pGQ5Io4qSO08Z/04tIBM29+9LsNKzySpBTRD8A9ZIWGND6v8EU3eMA9d3SyTbVa9BOwEHMQ8q+H/yCVezquoQI9SZ/Vt6BEJzUNFCT4DiPvqAux4Fj9gtdsQKoFC6xbwUiF+mRps5DyR2O9eQOOrHxr3la94UyOLDoCiGKLqb8DOaJ7ykPlzVscmG6YUepYNMFpLnDYQvZX8HBLB3r/E8TbuwTTBfczWkNCXfI0VMz30HmricExO9QMbKnJBURBAh02TZ1OhFEjlTX6VrvYcxC5qYqyXWAmvZ4PBJ3t+r/ZG6V2B1J5eawjilA+QHz9lbbfV39MUrJ945pR8gDo35WOP9rGORsn1+zglu7cX12g4e8TMdgK4GHfKq5LUw8RAw5PJzLfyvkip+G1lz+GLPdabMA13+tkRPilp6s7TQMBTkvBRml+2o2u2suz+B7l8SKaJGYRYoeZELQ0mzCHpMYzkujoNf3bss9Jx5gDn/3TygnG+djbKZmTCsHXULyVz8/biS+vzfuMMHwou+qzwL/hrAHsdWi6JoyaeF9zoaVH3Th8812CpxeaInfuwdsJls+YKOTL9ZhuCNfi0+sgio0cjSz3U5NBb2dZIkCX8EIxRbvo2320Nwdk+o0m340oPr9Kk/vLbU06ekvFcSeKwzF2uiQteA7MR9+AQ+Tm1wnmwBjEUXUU7DGpiWjoqhZPJdj3m1Q/LnFWe72LCFofP4mOxvf+xEvm9LDwjcltbTz5svdKrwTXVXRcPQ7cX6f/clowGjs98oPevCtUH/azPI6Fahs97ZHszzJyMjPIR6OpunpsjqgO1pY7/WprUHp5WDWqXvx2LkjIh+gwtWJVX8CXq5rvNBcD2UYLJj2NLo1+x29WqB35G/AssgUgyCmqZViek6V0GY1vNPc+NmIzHtgJ5j6Bbl8xg5kKWgjxxwWjUVPGAQXcZOPH6lE0IuDYcGQZNX2PVog/1pgsEeTDn2jKWqIk3EDrQGDccdKUF9zNpuMw1ezLUjmv4PubKalhI3mnueF22LOzXIKhq6uARBmiLLVmZ3UwGeLx9Rod6Wg5INbGwG87L0OsjncGpNcCbKSsE9l0kV4iLmB852CYitkkX9pulFWfBjGtgGtlwKDzqozGbaE/4M4S8SmB+rSocMNKNl6oD8KrbbxgVdePND1YhyIZ5OSIw0PpvcHEV0QjKEgDEPh2glQzMviQeMzY3rLZW+nDaB2mfBdNyrS7phLMEIoktYfOZMuOMSLC3VZMSqT8nETwechVSJ3BBn80Ep3iAqvIBd0VPFtnIip0266rWYlxmxBKO/M2uksHpelBXkA0Y7WS12C1I/uUp81F6A5YMfpSqzSfJJb8LgWt9MFBPs93plKuVUXhrk3XeHTKR/E6IABwcv36oUjJREC/XuBDb9OlXUpCTA5p3bN6Aq6384n+C63MTBALfSVBzi7e3Dl5lI3gS3PPwbhfaXk3pXEo5EMCvXO215gpNY8KUtOTxEPhlFgFwH/WbnceCWCZmwdw/j2eIuuk+3qtHsmhM8D5MTsA5pcdSW6A27f5cGx5IEZI1l+HGpCSSdckYXEJWW2nvV03Ti0g5s+td/LxkkDJ/HEfvWIgFIgnUgQEGQsESJrNykSYX/1KWZFVaUViFULIM+6d9/kTZO423ywYNIJJQwMgcrP7tfawI0x11LYyxexjPTNOXDhmpsu/LLhXsg/Z1dKJ2NXqssg39n3hvgT+a+PooatAXNVtrwMXs//tZZphLHTIRMlq97qBbXSBAAwjNmwP7ETD57MfwpeFANsKnAYAMOe1sP0fLtU=

Question

URO6m80NJ6MPi/zbpHegQ+nZUADRkAzuh1s4rV8vO6EngA/3ZJgnAQKLD0YP1cFcqxbxm6LHQJPFsQfvc21aortJZC7kfTn8Oy0Nl0dwliQNmez9ZOUgx4wHmVx3VB9l5yHMRq17hbFSnOpyhxGazPf5KSUbu3kXKYNhI246PfMl/5GdnSYma4CfrIo9k6eAE+rzo+TqcP2bk5VrhHyd5rGUZV2nwuT4mclG9DZYD4qY3T9+sQ/5V2Us/iq0N1Rg0pkmSo5qHbzi+y+SomN1+lJ6Iaq2t3j26MpGegzcPuan45nqmCuuMY75OI4OmY8CTaaKUgZ7UoopeCMlp+WkVUVXutnabfazWielxQp0j+hzmQFObojX82lQlIeuz/hZoFNJNYF8g9c4PUAdEqyDxqRiKcEvrI9QlYkqGX90lamfIdwzlo2VUSFizpokXnWR01sjKl4ZymaBqj9XDPHOU9lNJgdCunflRDSGvwCLGWoZ03Dge20JMOcgChLgHVO6jRm7ZsQSpWpyluH1LiI4Xp1H38Rpo5lezrBP47W2hXqnnN8ISATrMcmrtta3NbPxxQSb9azlphNxqFhpcd78LxKGeNTQ6qMgAmvaii6dsOc42IqY2urQhOc/dYw0FDSRonySX/GCmLsu4XWeunKY4yZF4luAbmaRPqf8YmehwJ1rTKD5yfNR2uATIDcNOb5pFeVIxliNL/Z+bHfzJ9rL99+QAqXO/Z4O7L8c1ZhgZ2Cbag2D+gokMxUy6mf2eTBfeJI9vxt5r0zBuC9mR7wUNzRbvgTZ3qHWnLdatDPPCeGJZ98oLyxWVu8C2Azw0Slzp3vhiUJ1k3WJi2l1yRqqQwkGyM3hrZDfKr2O3+KUH6l0OnDhqLE77hzyVWSDXlSg5gq9ya78CysS7uIdpXdBZ0kujoSjROeiSs7SHvRAW0GVnnN6nS7sfwiSWKAYYd14iunrm9OYpUtZYbB8BKTeIkFB4IA4wXg49yp+QsjYVKIZhEHCLt5G2TNxTOvppyTxd8TO3iJIMyzKdgapkCy9zACvHo4HON1NwwnCD/r6smjCrEupAj9fVPs+Pe+6VBBIooug4vJt6NaxFcv9H3Abxq8X2TOqGBiav9WBba0p8e3SpKk0LACzF/bTqV+Szfm0+Hg66dN1BPdGbZGFftp5HPs3Mr00CSoRP153dGmaa0hOGPt774RwIrSwOlDfsmxdwvzMVPHB5A0Olu6idfA68CxX0D2IPebAlQdQ16PduqVdmX/e/W3HWajOCjn8IA8L7XdCSKVcR8h6hbjmN8929IGnKsEKnn+cvb3SndN7jKveKMymge0867IRLH2AbUG6NEIKF14UXFG/3i4reNeD3ZZiBf/YJwbm4/HPbs+CbSZX1ozvy0DrDNyKIODe7aEf4HAcdFdjdPFfAGWnbSGQUkUH5uhQCRJbxCz/xUAzlQWdrtNiEp5T6HyFnkdC+L/zbyE5G/16btKhPGoP9oEAs7y2QTpA9mkBzLTQdbQYjUHI7n0g55GX/eiKpCc98hbFZSz8vfl54ocUfVA6Hjc7++76Mf6NHfK74zVghrvwgiTnClW3zsuSVZ8a2Culdhich1zEUpYLxU/EhbhjXI/p+WHPHfn6UjAAAwBiwHulMX6gRVt0rz1w72WaxXTvg2vUd0AeBbVDZapkZKnRcVZWcaevPnT/572z5Yx2/iUlgVwdhtqF2adb70lnolXqf0TQeZJIFtnMHjK7u0Y8B8PA7O9gIHGAZMigJN8sX0SAEmiNgD/MiJ5+BsGUFUhizw2XmPo3Tcqzq2xa7b+dKYmsu/OGjKQC9AsPi9PWI5djCUqX+wIN8M4wP2qFX0bvhSlsEwutPuOh0ZmGCbMyXM4SjvGJML4l2j9OlMfhRQapTtDhjA23zw/mE/81k4AG+MxuXvO06DyuNVMMs6N8zhm9Q9YI3n2KnbvF9ndPaLs56VvbVDdq4cuN/Nr2K8jG7UepUCyWBLNUm6G3EXweRbCPx8sJNGBoTPbroSxqBoBVw0I=

Question

Eut4Put4J3ckEpLp1RWGsuftJIO6BC651adoN8piR0t3voTamuFxzmPU6lDIMdkU9Utri+WLmvOPoRTjLK+sIVhWI+SDfZvg82tQbSpb0XPzSFnuJsabV1qJoaWnDOxhukvgTrHh0ukmmoLXdwb8HEyooFkUEeIg84e1/2fzUKF7SVnsXcCzt0LsljgejeGiTeWR7CrRd7HEELsOmEf8hHesCJySBdeSWHApL/8H01X0F0uje9s8qU/f1x/TXhWoYtYCRz1KrlSIF9BOb9v/8YqXnHdFVTr4j8MlWobEYqUaptAzw+kCl0vqiLtDNxLjOT4k+mfXrhri4OevxKo7RcNdp96awIaY+hrTD98AQzVOSMhsgZX33ErtpldigKVkbjEnAgAGGivsH4Bo50BweCTKLwbMglA9r/pU4pewGh9A/lRo9pDJPugCbINykSz6YIRquRqsbPT6lAXCOJdXxoQZcmJJ10vCAC9T0NpeXNKM42rfUea4eoitVECLsXQ0ht5uv3NLp/BJLEZl4mz6n3oMCt9dorKh2ITEV42ETcf6HTHUU6DstckhJDMNV2XcxluJtq9WMbxvQKnzDN47KLLiV4AZYjrNACzR5X6KWmIesRR4cPZDhdpvnOG9klGmvWF71rIeKBmRdonE8YEiFNHaLxmJNEy5SCOUb1Q7oL6RlXUdx9OKK5xEeQlm3AdrtJ+ryJ2cXeqqYi+LLdMss1yDhM+ezuDipE61O8UcSBDOtYRW3dKQdnaVRaEj+edLDE8+YLBamTfp1LX6JGg+nw49PjzwUhrFNSst1ZPU9ka6mm8PsICMGKC/KTWjPeFEPBMuPX5V0xkpHKkK8HmJUjqWaNo44VHMyK056eyUHc6E0QbMrWfmCgiQwLDTAtqu+fSbdJCBBwblXc6749PsNtpasF2d3SI8G8yYhkbxcthrD3YyPAC+LgG02PzPIMDcRs74seAULiIENyk1lxZEyKfqtj2V41UV3zOOsOXRxgTJefTMJb4VGduImMvBZHFpX2IBzZ0TbEQ=
1:13

Step 3

Question

What happens to the interest rate in the market for loanable funds if geologists discovered vast new oil deposits under the South Pole, which would require extremely large up-front capital expenses to unearth?

5FVVooYP47JJxg0B9MpTHtzps/ZDcJ6tW7zU1zdx5apufQStZAXZG/jAmHlu99tL2MOENkxj6S+J4Py66P/Kb6bQFEv/MycX7/SsOHbPEWwqlMEb8muR4jc7q9HMikq6ASjCMYZLa7Urh9qvPWka6fJv5NzxDc6o3fZN2Tk/gJ2Wh/YeNQMmxRlWzHKA6RIpcni9fVHIc9JAk7D/xAmfgNbdoOxRFEpDfsyX9cj87R+RSmeiPk9uC3lmfjgheDlnMOf+AvXff5TIVeESm8Ych2nEcx/AEoz+JkCKV5KAsTXcWiI8JOYv1vZpZSnNjbg7dQD4Q4/Bn1kFovVOD9Ipz7qn/Iq30I1k7uIyzan2WQgfH3oS9nnjp6qcCIPKB6IIYAOweWSFy1j5liq8FHytzlCL3KiSam4BpWBdQ8heDnyV8LI7gnvFziubKbPu0UY9Rar48BCrxQn1TUu5TXfpyyf8tWFdp2zTv2dYNSQ1UDEWbjjrK/7KqAm5LaAUWCCpJ3JG30UGjnmQXJ0bAvRV0wJlNuYSAq+fyh+r2nSSJjwVFMPgfxFt0a7RFYSRklqoRWuF5R/kTUUVzzvvlmSo9VeZ4oruX6vGtsbSDJEEr+nbxAu6J9XBAnIN+WdfTjjo6gHknpd7hdjC1vPgDXpdfK1x1Fdy34xllm8H58Wi8EejWgQpfMysZGtx6gnkxNjqZ5ghfOmxjLOTrz7GqJDcF0jUd2OU+O/LTHV5yz+hvhJ63z0o6E2DQZnfD18Suto20mqzXdCHV/zEVL9YNl4HvQvybo3/UfJjkMYNB0VRW/4BZhhudWs3ZxiUzvJzQNb0Rz7VTIfy6EzAQUZHdjwVuVlPLYqtI0J8Nq1HaubLpbwnGIFvHuvjhwkjYFnVnXObm4EDoRaNUj5mCPVGAtZJ5CZ2nPnrAun/dzhIyuDPZOh2zykQT5PiFC0clQ2oVnZ4jW5/bZXIymAX3aLaLX2Z8/FgLZs3Dji4KCVv8sVMoEZ8iarNQ/BnntKCi2PYAKAxxrp3+AVPmdA+4kDBs0GV7DdwMkloi3KKAcM56MKf5PsWRoecz1Yo/CEwg6Epn1Hhj+vZAV5Fo8wLnxjxGZqMubZwLNQ5bm8bEWUkj5BeOKqYd/pQiyPSBGkNWwHwz8sjUNVYAXTG88fRWl0ueKKQ8qNvzjjeydmeDWVQkPxBPTHl6GZSD6U6KxKw/ZrFWxe7a5p7n4VOlWgCLD5n8KqHHVz5UAlujM6T0PYZqr6UJM3qciQeUT8nuZj5zZG8wGyOUSGJ8b2ZTPyLflO5Dfn6x+pc6uPqdQoH3f+taM8+GEKAcAlzJOOxkQE4OoMK1W5jwd21ziymm9AA0HBPX0T8l6Tpw9CES0h1FTXN6iioyAPP42tvK0KTHYFRX9iQjhY0a/6YJ7imqM0bQIzE/0PknwEQPvbqgjYSGd0CDlXj44e8ThMjJVlGubZi/vRaJ39hEk+wniIDi2l2t1Lynspxx/t40XrLvjFwsmlj3m38F2K4EFoRfnJugy0c5XNXtQQ+Y3HqZWqEAAFL4PY1ukLGXfctscE3G3wKJ4x8sugcxnchTc6jHvKxReA7HXEQtjSA0gb1QnP9cKcJa/FpDUCbsLiOzv/PvJK1GvnKbYi9iaBJV1qQJP9vqtF0upEc4iAid/FWrAWxxtLtH5+d/N+lZPffSSX9ZPLfHAjxjTUXs2vuQTkkkntAmtnPnpoCBMSLCvsIqayatqSGCzFmuFjJfQdlYPKt2fuEo/DZq60DTlk9E1I6Ppr+at5wDDJjoPny9pbeNuNWNEJQ/rizN65AMkTzV98W9cuF21U5aK6zGMW6QX9bkRLpt1wpecw7PCeaGNx/Bd4O4cbXFT7Z1qq9mU1RLN0bJEzZ

Question

8uMTdM+0LrqRBITDjLLDWZM/CAGbtDu82o1pBgCSny/lQvXd6YT/idvWcM9dfNz9WfiIijnSJu7PNqzhjJy68CtVGqfDtnLAPya7cTfWmO6GcH8fm0BtL5ggF/ETCCkJk0eaVXeVMewTwInf2vK8xkTo3fLBoyFOsu+gBXtvPFqOFv2lR/C44J0UpwnG0vdS0IR92k81vV4+Fi1NGRHaBR+AyLdP5g6l+XVliAMkOdvJnH+/Gcr+6NT+pP26yexXs3fpj7DSSkc7zPZNMGxzp3bjh8mVPrnVcvG7zuERIPgn3DZI6si8BbK9Mzi8cNwkV3IsmFIXq9p/G3aY8fQZV1Z5ymekGle1YQctONrFFYjOtPmoqXjj2bHL0LfRZ8hGTRk0TlPZWEtfuUPP6XuHuCPuYtVkmsuMre4q5yBhJSvVhcxbtWkXLzfs4b48eVfyMKQwF/fn95AZ9NYs7KV1D7571/Itiy2kGxY0zeM0EU/eaDi73tzpePZNBEMSBfDklu0Dr3zSXy+ACOcjg5Tu9UmIVg2JNeW79MAxlLd1RsKK17y7qH1KkWvpp3afEnh6xeWvyYxtOZx8gPP4RP7nR8os5MyMPA1gxd++PgF7eT+ZHDEMJ83xK7Su/HIeaK0NoBd2oWllj/kV0MbHhN2h+nCNdIwlTjjM+M4LAEmG5v+paGXh4YHZnyTCOqmTGGrrkCg80abbMblnTlmiA6fMMbaq/64JXp7Bzl1I05V7qfn+7FWgAGrZB8uWCccYdrtOZ7VkLqOt5+cPYZvWeWTMMB8RGl/pC2sucjqIs5DMY4QZNd9uU+FUOorLw0IOCHjoCsabvzcQgjACqo0zRywrkh+SPx6idqxuTq3IBpwavZPf49yM6zSsPZBU2ou3W5oEkg8Qaz1pwlBwMp0X3s3fuY11XDT65hLW7o3Gk5RyhdouB58/PtZRwkw6mNpqG2vtseVIEKxQ73ufGmDfMb3otBtOMrwfMZP1aSlNxqMBVKWbzT0pUuNXG/rhvYXUAeGL77yhL91M+xQrq+tnx/hU/76R009FHsLpNUxFZazCClex6v6tksu2Cfwh89dnfe0c3lvQwh2cVbmhwJ8NW3ZgDB02+zzn9UG3c3gU0yeMGnlwN2NQZiujTu2SPE3IjCxHKqwJmjqpJJBQ5/P57NhotwehuJGKgFMCMygkLAs02+2KJFPpmTDLeFDqsbsmcoZ6la//W7pavpqXBb9wBG29jgykHuHk6odCurR+ItfDJQ1sPLh0FhVfzRGt9Ad6i1VwRI0gEBx7YWU32AQAH5I67UNDIHn9xeqvGtflJ6bHwrN1DYG0GPexa+jjPU9qlu3xDPdjLokGXwK/nXUvjHOWwoGIU3jxsvy6/k5rClPl4Q73o9jKDVhja8ByALWu3zjyHA38FoEqZRSDfKpKHHpCwyTCL6AKvrl271D4GA0tc/6rdwRMnxt11IrGeKYxgHU3F5SY2NqxF4LaPBn8k2Vfj5KtAtocK+3T8It3+UjkoCW1FpKnJxAm1IqRGmPUicZRfMGO7wb923AfXplLHhLpGBesENfasAEs/qjnv62lrwgcRq8Unw44BsMlT+hdM2DhVzNP/D1cBUZ3Q+TYOeOG4PjoG7dMsfCe1XCqzI9eLtCirmoCjsWAZjAROLWevp1Ihyf2axVAIHsvovb6daSCNdlJwQFe02v00/W+ATeUSUvdtfGZFnT/71Zf5DzRlbGK6RiU/vR9d47vLqFyf/GvPJ0ryAzsb1cSH4zUA8aFJxyTHHfoJRGco8iW2/mtr0wp79/bnEpQKQB0l3Gz1XxtmKi0uhw7ILvBm+fJDn+Mu+O7IF0RbzmPyXjDompUhFfANmmDbNSMb6hV6Lybr0OOjU4177ptJzCInWOJDzT6Jx5oeBLBVCeqDXG2KUafvtpnM2eer9Wmq+31WsSBlcKF1A3spophPSlA14Fn8TINmzyheFGVMmPH8MAvRonM8xebJzu7+tmKkamrRgCahPTHQAYToUw=

Question

4dJbznVmJV6McULBzhZwLKQSprkQcwYsRmDtUQvkVgkhYL2IoPuyxcW7RvEFy86DHhafuUsHU4ykFc6QCIYmVH8dBLiJuITF0bSw7EDR/IT8U9/qiaq67BgH70O0vE4M81RlEqKhxkEC7IZqYCgwsdmXGBIZtxw/EqGHSbJBU78PxLd5jyrQGJADoIePi8kNNiAnZIj5kG4puLIYOFMfWB0N8UXJyPC1fBHxpD3ABZE4uOGyHOr9QMqKIaj9mjGaqthW9snqwEvKjmomj7UMi93hYfZClBf/WI31UzSAv39sUiVdg2SMkNn42JfblDMTXE+Y9QXUFi0Fm5nRCx1xLXDdHHvKEMrefR2+7yBVXXCLJjZhEeuadaDPIfx+8eLfUW8wsz/zKFEw+2lAbKkq+/ywquZPLOjxWYOoNHf6TNt5SNQhqj+yRgZUjdb93rAcgk5J/auBI/4cuBDtirINms5fVjCxNbsS11PEFbWT46rNpkBHNhK+OhuKInrar0Ilqi3HgPcsi911e08BeSSNyfALZT99sxXcXc1/kBbGMKJFeKWMvV8UMw4cVjWkZUczAqFxVlrOCvrmEDYl9wR+6PBh1WKoDimpeLcuIvMrrtE3btr/vnb9OyvU4eoinNw7/f1+NLFXb2onEu5dUFdxOJqQHcuyc/wN8+Y+XVN565pqhGUwqo5b+PE8eovxtrfrYFnJdqIAzBhCw7X3FYgUrNfIaIUD4frxiyLucm2T34JC12MHNlOIZ9qDxOmIzEKvKD+iOajHZ5MbI5jThsdob5SPEi92Kq75Hpc/R6X2/aFqp/i/uxOb/5TSWJOWS29xNNUW7+HDePhvby1H+tg0Xiy4BJe5NHqydRBS9X8+ZWx5iKNyFwOVpoHTF2KyMztBeTmHEJ72q1B6sDuBkRDq/XVxfxDd5Wd4mty23AZxSWXsr1ZZXMeDKEEoyDDBJnm5Brp76lRiyP2EH5cCQ5MU2weJEenJC2XGNJ7dpC5j1ejgcrg29PjHvBAHJqh+kMxPPbSCFrzaxLMLO/VGLN0c5VxQz+SsboItOoaV/l2JV8BFnXMD8Se5BZhnNrjFtTAlehUy1jJuICoAKIyB0KIXSLDMWbKxaSzHCC1n4U9JPVNAby61eETf4qouZUU=
1:20

Step 4

Question

What happens to the interest rate in the market for loanable funds if there is a business downturn and general pessimism about the future?

CD0E++CWBvY0BmwLZxg1r1zCdKVhdPULtta0Eu4gPbVBUIsyUoDT4lZ/Ox4Rtlzz+IAemizKq41KZlvHqs+Y/YHeuyYbltI8cSjfuD/EEuKpQ2x4UVTkAspbwxn9RuUtPVchVIOYAnK5q0Dn9efU4J50aLhCtbQNJo7hQvJlVPqyqmXEB5hBPHPtefJplrFDuhW+IWhObWjCmgQaD92V4a8ykWTgSDmRlnpK8BXbUl6zMuex8M1uj08oxGF+/Ue0V2/J5LOGHImTBrcMX8uYvpasdzTuQ5LS2pVCt2iyosj7utCyqrJ/mvLOCX/PiyDpWANtH/V2ep6SAE3rDHHgIJ9Fqm6aGOW6tkHAZ+QY7nWcfFZ6q86fxHw0IpaHLxXQqmb1urEilZ024ONVQ0WaULXcR5JJLgwd9XiPosc/ZWnF4dPoTpOIA7t7fZyIfeWmq2s9iC5ufc0rc+W53lvybPEPX0Pi5y6aRwjB2/tqV1whm9HIS3UXorgk2hglKi2MjXUUC8Q5BTslHArH/PUo16WMPRenvjLw5TeWImXf0OdF1n29yQ9UotD32wUpHKeUjQGHv26EYLRkHaYbm0EZq0ngNma/xJEyTWzenSHanl0XSYPGat1NQG8+LskqXgq+yp2XDFPeRF9b1F0MrG76u+ZHkjfV6txJirlj4oilSlKv/h/VZ+dNM+Z3vcg/9wS9U5Z6KtP01v8jARJJ/1yBI8VrQVmWDCbHba4PSFRovDpWKZMCFkn+rWjMrqKMes9kFK30ft9kwRwYYa5UusFYsGPBP7FjThIdUjrrG2KmFUrByft7M75/siWpcVWPVqgd6ZM3m6J4RFvqDa5O6fQkkfeakq7PM8EinFGm8cGXrSija7H9BFKQiqV4UusEseQmu9SQK7W3IvuGScYGwCIrPW5/jh0jsfc/myuffEp3gJBZw+OClohu7Sfw9KFJhdYlJqkzZoN71auD8DVdOMcyKgaV9qemIsoP37Zu2YXckrbsXt9UCVwMfSFwYZZIan+rHh6YargUC0/W4FJeS1vLAc0fEaG5NP/St4lFngeoTY02dDr0WWxIPc7yxFPsgeNUHw2LxUmZI70HXputBHju0BqJpBm1iFnMm9JEjRSKfcage6aDFtKCXC3HhJVp/qSH73gOCajm9MFGEZ19CRYKkZXBxq3olNmyscEUk5LnL/CXcH5tss83EIrTWpxmRs5W3DB3F9quC0ho84IJu2tmd6pN/vuF6qMgqvJzkSagQS4wn84poZD4mMKthFQQqK91+S1UyhM/CNU6+IToEe9fGL5DQW7dAvt5iKxgigIwhqyIV7Fc4kxvF+M2BoglVAnTCZGxsdgPH9qkp1jqzg7jT+bye2goordms4ygb/XpczIwG8H8QhvnBuW8vncmNFTb2C608q7WEBFiaOGc2rM7lzf2iCAudGA07ecRXD2u3PyQgEiVstBx7caSsKqy1oQHq/ct33z+jJCVHQrvldPQC/1gFhBrMLkOjinPk1Zk73Vh+WWtsRx7sIbdwgFQADCaugBVzIGLIRNEtCokS+QL1PiC2hNl4dF52c71NilyQa3K/jXWH1YiriXQfXma6fcmDEmf1IZynZTn7qB+GZGF9Gu2R3gLvwYcJ9BqjjzYsM10hKiZDTbpruUReAA4hGV5sx+cu7UnHVL9ZzLTbzUlM0yT3HlKMyceq98rZHPsC0p0K9GRgZJ6s1M/g3x4HYL7XsxZWjcwft/0+RaTbEP0lp3H/KMpXYoeg9IN/VPEvGSX9Ba46z1d3Xb/DBxQshea

Question

KOr20HEWhCJOu7tmEPVA+L17oubkTu2rFUZTcqgkaOQGw/U7TDXR88eEUFcmlXSutyYPDcfc2zwP4I273A6p0VSgdc3d7fdo7djooBIfo13AfXjJvFT+yUzUo6MB/PDDguUaPO6kjJEGtbGRKmRwhQu6maQRU9xdSz7qx2Q3OdjAqNuDp0+Xz5Xbkg06YKecafN1PtN2r6jJPdL0ALDZsuG9ZLeYS1ddF2tlo3Jv4gbph8gxaeZCMIRH2ZqswHljTnS4nWqH7z4EK6qvikjyfpxn1Rt+eMwsmB8BrdWkQJp7mMN/M/vFKazz0g6fihI4iz24nZGKngY+DAqWWA8DVc6z3yQ7fN19FGR0zEDVHffsCTCLE3VkE/HL7c8PPI7mHtqhOVxRZpyvCVfrdN7XQyNsdZAJVIh9lucUlAxDaAG0fOQh33l2fi/Av2s+lzYMmtKIQCP58HyUhuV1yvpYhjA/zQptlfTLDBd+7N8mg3eFgTs2ISGiBuOC4b2jshIQWVFDrv8wjL7op1kSK2HGekOFYvBK8KOeLRWXTDN7fNbREwF6uJN2jVTba3lzjZkylIhFBpsOG4Uj9UCPUyE9zkdLSKrQ3fF6C2CXXJk6ldskHbQf+ABECkOY2pAqqIIAUU0wa0HbWtQ+X3/6tuIQPQ8sGVzi9yoiGw76Y+fB/J+/n46woqOmT6j7tsFH25ujNORBp4aR4VcRzY6Q/GDvBHJMdVyBmsBzb2wSUR2rk2e11MoakIiAPVy3di+snG+Els9BERYdTHVCKBf7qh7gPXeXE18FmbidkWE+CzXTdccEM9fkM35vlfiz3iOeKQYnNrAWSemANwpUFnezIUJXYEr7qsCD4dZwUr1AHmE7onCTVJmFmxY+Fq8V11rg0a8hiEjjVxUz/NxeBCHhAHg9W2CQhR/w4Sjm1h/7YolH4I0qWA71PMzX8gjq4LX0Sc6UKFfp2aO79qYBDeukVbLoqErUy/J27nKTE3ZRl7hwuKY+qSHAhKjRDS3nBhpDcmif6WvywnssrN/CQRYnY1Xfssmez9d1d0rkcinjxbPtA8VgXaiLVsR/bQ5zto7SPtEzciMKgwJKb3G7ILY5tJfwD/P784QITC5E9t7ayLkKEosHTG4MwCK2/AKL+1uVSKweZ5SqTee+/sHKytqtU5i9Hg11CwCZtmNkTtbrfRZXwsTgsiJddOPVb1BeOLw+VIOwO0FbXXtzsBeMcLH3Hp6EFs8DhLzdkYlNNvIjL/ZmOk2wRk6WnTG2sgtisgfYmrSVMUTqf6WlzF5+PUhnxS6UL7N5zOZ80hasrinyfLrd1QmwFuc2ohxriaNFp59st05GObbkdg6CwuADM2mLUUpQ4SE/1swgATaIuBsiZQhRHuurDC9qPJsU25HwnLZVfmZIE5j1Kq72yAJQkYSlvMmaSlrjNIy6bUD6Joixr1jIhnb6IcGEXZ6HY4z20L54KZdISt/CP+m8Ugn6FZsdnmUGsy8LZ2WzvfRacHN2V78BN+iaXY6LfsAZngGcf4cOLGV049+kT+4p2Uhbf6i6jcO8dMhBcpS1i1rnuHmjt/mp7psTa5cusUCJhMSMr/T1wbeJRBMpR/aj0O0qUBTty8M7L/kaSJy48e2rfF67Nj8/NDDg/AD07w0nhUDI+lO74InEd07v1yk33B7+tu8o2h1fu2/B3xl1sZgeuQ0WG+f+cL0M2VotxZ7PND5AIlvHGBxPzH1LCwVUb9s=

Question

d/U2Utx/jIEWh90EcrDaBJsBQVJZreReAi12is9MZv1gNrWNKuHW/fkjK38+BEvGbuVCZ6VMZNh8QhtjtOJwX474M9UPeImB3U1zNwiWdl7iOXyO1o7UHr5tZ7pa1tIpqJZFOGwtFL1WJIpY7u7nx5puHTLVXKfIMsoqb07QNXY1FRUdYmOU3DD1Cl3HevN1Os1iNNTxTqnHoIl9CcTI7zx2tHUs+r40o9RFWtthbPGZDr11RZZoJ5g4Y86qfVj7d0yd/EwFsJ47oEjUAUWDy/tgUCQ6KrIlzwqCPh78NY8SB/ckrjSxMIqqF/EKBdhMnzIdy15x1ILVhwOwcYz3ag0FNvr6NCT86mk+0eIU/4ghXaElU2uKYxPT6EQtp23lwmpYwzZRv/QwUsO6H13UOO+KqawI2hdtpMOqgMop6WlilBuaxcuoDV+jB3eJuaLFq0ZG9kgKL5kd1ThAE++Dk2bH38RGaF/08YMyA19viKKr8lgtQSsnxKpXeyO3a0BWN9FiTpiv+2adejEbwbBkh8ulUwEhcC6kjMeFnrrW1uJmIPGXKELY+niw1PuFqlfO8lMVPe3OMMgDbsHo243eVUthpCIKBWiJxcV3TNvXRPDCzB/pV+JQG3aWzrsrSGB8Y+4c5Zxzh4s4IWZIclCj4ay8SZPqobj2b9WaA8SV2e6g23litr4SAq42od+VR9zacF38uw6StK4mJ4U74cOhZOQCXSbkte5iMnFfny2XNpDSnEuS3L8i+BF7lUFig6USlQTQq8FXmBWiqjfDNGKBoTcKWlhhrGUVOm09gi6d7oDcNxpL3ugXj94bxR53LjazrDCtJCh3JhXmygG/Z5Jcma1ZglTDtyfXoc1ZrjIE57SzeVA9udB/R6lJrOwSICB7vEp46/CO7xXzcp/ukNf6SOpBg7waM6Hv7HOUKfxs2PrF2dkgRDg3gQqaduuTaZl4Z+97SbiggTuXVd3AEeTmhSDaQ9Dquv0LyRzMyZR4dOtTJsYBolPMBBw3wuSk5wx5wjrvlJEHbyoqQPsAb28AMTaz1cr4UhWrhBNbItlvnACbHtLRqNwmXoaoQaIYWSV1rm1uwNjP2nMEDcl7kfJQ5jcoIsgYktwDLSd3JgJdohT9VN834GBtCGUKJDIOoTiJnvnuWwXy69VGSXhrY3/OwA==
1:10