Chapter 4. Chapter 4

Step 1

Work It Out
Chapter 4
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

Consider the following supply and demand table for milk.

A table with six rows and three columns. The column headers are Price of one gallon, Quantity supplied, Quantity demanded. The values in the second row are 1 dollar, 20, 150. The values in the third row are 2 dollars, 40, 110. The values in the fourth row are 4 dollars, 70, 70. The values in the fifth row are 6 dollars, 100, 50. The values in the sixth row are 10 dollars, 120, 20.
loMyrvGKYl80ndmu6EDs7IJ/vFuAsRY2by959O8eh/Olmknp7sp4mmTc643dRddDBOVoIL3/bCNFOS6TJ9j82TFmANEZ8NM4zYC4Vr6+HhfOHgDmZ9EgdjtGuYSKCnuuiu3ncPebZ/1T0uuYqDu8S0pY3k1Ug0r+lnxpQw/2mlbAyxGsV7unIHhTnbF8TECZegxJ+i2NiPKm3PB/FU7UrzbQ2KHlnNTXkdP6u4rUAoVtM53+RLI6A73DkIYOYzKSmbXpYGLOME9/RDY7UWcHZHMF+B5EHnrIXarYW894Khm4s3q2ky/Wqp7z9GD3PVSWy6aiSgqAPXCC/7h+c84JodDfj6Y5zrTVt/d1UzkF6GHXOapx2nbeN9WEuUomwG8WF+pJnTs1+AvkdvLSz+EEPfVQtciCrrqUEZtbvmEG2x68AhhfKUoGoIAB5OLjjY5th83q31n3U/V0S6dRD2ZhhYkgCWZHwXbo9H6DRk0xFXfxw5lqgtbx14Z2XSRmbJlcUjVe65naML9s1qnnnMWhDEZJGAjCOKaw9NyXa6Vsme+URrNEX1mqUJd6prSF9cHjdKfVs4RMi5M6tfps2QPmzgH01ndMeUsBgFRf0pdz/T5yk/RAmQ80FC6pxra+ciySDYoAO5O4Eliw5SliPG5dwx4P7F357wQWPAfZ0I+k8pXxG6r95ogw4gyL4tw59tIo8zL0+DmvPn6kBeConnSSgOGHYQtbchpybmPJMlP6WkYgomfVTI7JWpUM69Zeto15uaizstpmCQl9uvhcANBXbU8P/IcEc/E/62KKdBsg/Kiaz62RuANxqmyybXBDaTbmIjsBqMeNuZ+yL7HTMJa9xbyHOBR1jwYA861MUSDSaqbmyN9UbZhjlcm098QPPdGvQ1Sg7iwQvjUVPCyk8VcbvIgXi1t9erLno5Ov7IiN3HEWEcgilBbm7Qx1/N+RpN3SXXpZaOSV2emi0DhmLuLuIoPI8rywpMFtEgPcEYhb4zbJr76uYIQiVK7XaQVEt1shlTuKxKTNOYrQeTjXHJopgLguoHqGR+0MCcQLlnQEdGzuhsvbXgttd9DhomWRhbg7/hxQwj3mDX4ANOVpdOOrZQ4B+x/6oSbzK2Y9UVOJVJEctN7Vwg3c7Xl7EOwitclvlAvFQvOKr+f/zGpMvjLpU6/m657twwMv8/L+guvGROl/pDVThElxbwLeIChp2ESyGL+SR36bH/r7+/AMTsf5vnUGOUONySGzAdQugwIArjDjLfmsZuPbpCSHE83o2VWJqs2Koh6yIh8M6yIWrNvx4z9aJpuTCBqhp0b21P6zeoBupIx1yoOJXyp9nR3t3Z9jLTCS66eP/rFO6pLV5cdOYXrk5Zd4LnWpad72omLnCqWf+4sj6RiLgEekDyHBOcsoWv6j83rwt0q2BY9Ry5OQUPW2cNUVcQg+O5VTW2OlmNTOFR9jeX5wFd70RfaIirPJeXiVXFmVisURqV/1gPLCbJRlYhk3AAClaTfpZgViDjRTRxYK0VkrWJ5kSknF3HZy+Ng/vC53gBDmna2rsJk0kaIm1Acu3yifJhR2XTfwHBMLLGkgJpORWIQpRLMHoKQW70Hy5bQZRGZlvYjBJL746/BygQwRoS0WUVJnq5DAIwHyHbFpAErsxzNk+K53ABVpACRxr7vddhhYtTjRN9KkE88QSti5IOE9Q8m3ptK0J4hKQhtxlV5DABnkRAO7dzK2jpjTOsvDzzw1JCZWxuiwxY0Dci59KHd9CRLI8f25xz5sst0w6fK10yRD5o+wXK4jkPeHjtLBFwjT3yzyybsdZ7slT9QIGkCAH6s7QCK5PL7masMZvYVGeS4b+z20F/1Yf1qMki6tbOzMOjgLP9NNbOshwvUHRyFp6ABR83hsda7ft93mI3KMC0J1ZmAf8CSIEsLT0omLLKD4Sz5iYkd2RVzjZOwQS0Iu7y3IM/fwZlZFifWQKUxkTewIeceTVseE8VrOTUtUgehRxtLCZ3pqdjU6/NH2cj0ZALj7O08+X1+8J/T1xazPJThgBsDKCjpGJaRg25g6W7gYS0OZ22aqPd2GFkQ0m/3JjrvhNy8qgCQBEC5oyQ3drb6n05lE+d7vGNIqezXkQe+BQ9pnywiHPSB3i8W19q2JBDOxLF1stTN1tLINfE2OFRWl29bVIMBEZJXe6yZcLVjLJVg3Xxxldl7cZZEMegKKoG5quc/107Y6a3IYLDkHYM1gLlENToVQlIJr8La82SVKMR9NKMTtgKInG73ul2BWqTJY4dp+t6Oj7ChdoCfsKcb47Ely+egmZlGhZpoS++ymoJaqo5hrKyoEeYukzwFp4bFZAcCGLSygaixAL3P20GeQfaaGUUVjeyOXTHjEfD/qEe75W/Fg/eKyGKNOd0afPJTqr4vEY0N1FhkWcKvwRCWiZL2OQn65kkALQtu0yFXPOp2fv6qekfqqZFp4/wqatpG4sQJrr9byFVB4N/nXf5Ox7+Tx6ii4+f9O2D4EI5m1ct94Xrah+XgtOoZomTqXztsRT/rNxiiRk1Ybp9uTvBtBBuPGRsQdxT5YigoIvt/4T3jfbQ6treVErmkJAyePLuffbjh3e4rAwTGK6FdlM2ISqUoFqbRT4Z9TGpfvdWpa2IDLNf3CKFcqFsdEa345RUYnfApY9V6iqglG9msGsYOqckx4CyvzCIrDCRzBfw+UTrYktH95nEVdfagiYsGgezD3xNusmfoznWD5b6s+wPny8RJLxLIzXCIzm/ATY0S+yxH1KzlpNcrY6p5LMlKo/xEUyisB9TYuRUwa0FzA2F9A6nZ8tlYGKJuqus0mvk6Ki4wYa4vLlwHapGqNzU/sl8etc+GJ7E2C1que352/zNl3iUjiEK49qGMhMMiFsF3gdqTqXco6n+iSZO0GpbflabawieU6XQvyRWyFVDrRb+p/eiXwMfCKcFTpzKHCaOloDnU1Ny6juLXfwjCZ+/RMeAyjE5N5Btn7UnJXI7ZCRABg3ccyHNVC+pKlzBy0UknmOCtObybyAr8bd6J2YyH2hU72LKMlxT+GlQABPvhbOczS2MTNBUnQZlxb1lxCvBns5V0dkOL4+oEWuSCPAfCudGl4imGAgyBzAmsByVhA5BI1w9bcUqls3HXM+JOEFgeB0WsUADZWGGgOpD3tQKEv3i6WhpN15PRTFY006P8qTR3vLsRlBWc0wN+LsGgMX490kHEwVXj3rh0ZYD7A0z03YzWVxoM4kLGN9vnA/QTD3xyCiZHB+x7BuDzbCJR4fCXUjEAEz3wM0fPtbBg3AhU4GxYA62VsAo62wA/pt7RqYzSuOsUt0ez2PJF/CzEU0As/rDhQiU4qiXHlffNVxxK9V65Fsadgk7ehkWU6bk/PnAFzmi3mlB7jELnPqwfAzKrqhVnEfyIXeU7YoOCNMNTQg07f41RzxnYGQo4XD9IZM+FEm1WYo/mubHQiVH8AhTMJRqsz5UUAg9pN+WSMk0WEADIrbSJGPysiA3zw60LtiSRR3nKdS5GOy6etbtHH7AdSEby5RTXv1hqLn+AW/RR0WS/EYLzNUVY=

Step 2

Question

Y0S8JWQSLWCJHoW3BtJ81g08hcYw1uvWiNTvvY8+gwoePaIZXg4h/20TVOIBc0TPGwfVlqtxyfrGuVvmt64AuqTcowFPV3VZskF+2kAYXJw9FRLe1GcsOJom8ImCzmQYLMjfE68vGFpT57D6MHJhX86mnuJO75eSLoS3923AjnQ5glM4ATD9Y1wIZjawl111iHRhkG9ZsAqNRFsXdviqiyGl/JwRsQxzbHSMlFePAuRTejVnPof3LPtbCPQhQwYYAlK9NWng3Q6CTV+RSE36nXe0+QppUCRh89K6CSE3GeA1X0tBI1NGHpTHjhUHU4jHIsfFXptW3G7VswkHIYT6vM+mJHKELXcNTEXC4oT9dBtmXJXMILFi1rCURWXRhf+8xysz1uZ31vHGM6R7PupdscwU/z/PSsoRAiV7TXKX/ximXMjJAhsl39PG/o8/sAC9SSFkOstYJmeVFYkVUR+lwMAfCNx/xP5wuXFSKs/FInGeetHRHRmiPAR88ki5IRriTPQ/dnf2+xFKMTSpH4DKpS/GfMPdB2pEy8lrzkH687rl4fP7RBBlzRrPCmHdKDoovuV83WPSYhvmVQ3U7Deszve6Qkg5/+dxqt+3AKz3NSHf1PnfjzS1k7gMUSNkFyDtue3uQ2WFyv7Ayz5y0qNTv/+/2hY6DAlq9jZ8/ReJTAPje0X8LmFBBcxvHc+vQLEDQDzVl6QC3sMPguDfKIj7HhvnEAOJ0Fh8fLYOSgmWthEBNLOE1/zRnXkK16A7vevlZor3R/LsD6J2D3ewuTJFIQAZtjE28+g/5KQyeISXfd4KPOP1xkB9Too/2pWZsNN6rE9EYWn12cDWSMyRMFsAzQOzLq423uohF+DRyrdSRAi+mgD9EoXd7+MdiU6aejzCjIQv/C6BUWnFcE3moTdZh5ha7jpP87GrCnLRfo3FUqjeb65ONEqFETaE5vXkNpg0OakHCmmRGaz2QWcegoBkncQ42CTVn4jiHJ3klgD5oTnizw1vR3h9IlJAsHvXQMP3bHciFPGGjasZ2KWv3o9QkpFP2RDGZzmwreIA3+5NfZtDutNUiQKiiv/QSGbVIRB5BK3Gag8e1QpeeYQd/9kRAhpCNQGEHwZbRNbtpZJdjhCw86DYpEBTCqKOcu8eLKJxQN5CMqrgyu48A6eFB40ifEHf97MzreT5vEuOezfVgLI0nArobmJ0UhJ5OwU+OoAqjyjvPf6oWWbf2ONE2QnnYRbj+vxV1lbRmYpAAI2hbWg5aCDa3fR6M9RVrmB+UfwG+QlWRF+/h/AEgr9riQmwZQPkXGCh+ADDUSgvVVm0uo2k41pRpZoI8Bf+0e1cJJ3+r4K+W8qj/MPlkwzwkEg9EoUQSbY1vr4TOM7Qj5MXxM4CZnwxeC/12x2YYOir82fpvQ9te7VDNzJdiHw1HfLiHFMKZgvfUi/T4A/d+4YK0FtxH6RINCuDAbi0GiQDNfu79lND+K3OPo/5hAXib9LEdlZc3pjxQLqZaYwg1j+8bQwm+FZE55GjgjNlujnlaidxypqUkpRNGhjQ+KZTCkF/wqvfsQd3iPtOe+2l2NEuJNGOkxrPYDxDaZPd3OUnjfagHkUCgyOhJYyqiwJmjwCyAL5AR3ldESY/P4l10oqbDwBflkPVR6GqyURcYyFQnDuOGddPkcH8OhAIfjwWrQMwF9PLtLaM7VU6WdP45L9zfNycCtKIZw1EGW7DlzsewAYC++QxMS3wP3NeTGFpNiVaa0wCh7WmvRdBWSe3LbI9ZDY5cY+uiw11gsZCgoiREXmCnwYWJjfQ0IrG4lEEtXrDJPNokNfZyXxx2meatO0XjwDvRSZRS9iWe9natrwoWr/VqJngQrDfp+7Ih3Ddo51d0yR/tLcWHfbkIsUBcvryWedHptSkefHYLm4Fi0jRY56TeRoawxldMHJo/j9IDRCTaBbFPmc7ummavKVJU938igtgl6IylIb/h8x71AbtJ3fNi1ojcAjtHpOlYWz9rglP4lH0V8fCT4B47gnJmsfzHxP88jMZQ+dfIFP4yrDOhZ/L+WM0B0HEOENUonTWIk/dWZbMOIeX7epzCISws8R1wqXSrpJx/azgrozicIgzMcse1UUIMnCHVARyY6iYYOVSGd+FjWq8o/giWn0DrIUUjURQQkczHkpf27169hphc1GkRpDB3CHqR+4ZWlc7ocgUB7E/xAi4raGKAzbJv5H2oe59qD3lhqjiNhsQS6iuq9bZ4GyVWPStUnz97OYaHsOrp8/DQepakjOzz0d7JLL/yxQ3NywFx/8Z1wrdeZ97bW0QgEMKZLuOnborbfySex11kTq0r9/a6yVKXHf71DSQQsYtyT50prA5zr8ovpR+/KqLZAdCY5GY1dGvk/2H36qkBLzdvLazAIHIGDlQSE3RRhjvjfsdcBezh5VfKXA4ydyusniVBhj5+bNU3V7HczcLKey/Nd+LuhnvCu3yC4YHSgbJNZZRgauRFRyW6rWclRigTjUTATxNeQUp0X107sC0EIJSw7//5dF+wO92iYHiy8y5yPHKVcpd2oWY8O7akumi64vsYyUIPfosvFLDnthEgiea5zIFIangvFKIhR7I/3IxzGcjlp7H7zmVj69afPLERi5df219Q04dy3Ml/EjUkPZEXEGxTnUN50kqf84EtQ9+KclMAwtGJd7a9Ffbq3ZLnSHp2SCJr98HLX1E+JFqKpHqkJvhPybWd3KUqEpSMTIQXSMechAJoNYXfsUH6o9oGHXdftDZt87mWcGNbDYI3vcO/nBVRlpNXsvaXI5jIk/Yh4HgfqPr7O1E5n5Pirrh9ilB6ZMdxL+JTD3t16FY+8xTs4mXjqKTqCNKXBckL09Rrlex5e3Oy6oDqEil0tQiI44v5ppD24NDIZrXBqxC3N1Z2F1rXQxo8346jpw+jTCbssByFuJMj9KiHp2SN1ci85se/t3112aDBRgUN7K5sNpfRrTlE/c92IfhuLOePKk1frU5zGUHtiz6VAWeJj2WkV0w4tLcvQysj8OJ9pq9FaCK0lkNJphUrIrwM9fTmsarhueecc00JoupTF7ttWwOsDwDBXpL32Ag0eeNZmWqtqtHBlDc20JH6r2P93NaRV97j5mXevSVQ1+H+9TJdLWkQPLBGyOi1XWVi6bmPQUKVBAvRWtkaY2/wCPODOenS7OCzzGA3TGkQFb1a8y9f3PFy+VCsOwREFDWy4kbeXiZK/t2Tl+Va+XcPzRaqTf5vz4bYe32E4k/7U8mEuidwKW+e1IMyxwGQ0G1HY2blPPKbw5Ovhhlx0VBb2M3SpwdpK3+8Com0ZdyeVmavzyvJhSb/i4Mgo48FbPYUFSsI0RQ21Wxygwbi80XB0o58n2EVyBRpGft8lvEGnvli48H1GwnoM/3a+VCBo0zHo+JxJWm4FoiLZMb5+Pwall22gyFX1BB9zmMaInj5lNkiJQk88VYQTbNuY3fAwY1G/A59T+EIiPt38Ij4eV7JKSdRp7GDtfeMHwUXWBLvbrXX4JC5JCd7VzwuYK3QFdYFwNcrs8yr9AhmnY/OxgxQQcEHUcC5qBROsudx9tnrghZt5SPOnv8M1yty0AlsYfXN/zfROA8lh9K/JhI63rbrf4xlmG1hghK9JoYDoTiQfUeoNRSsFn4CzK3EBnAItrMJ0iAVt37xUBIEo9gnOOj9vQSTDWd+lh4bK4iqdIFAqvF9ubIOnjPflUxPrFaScA2yEmlfZNvW2Rmz5XQHJbbQw+POzeIGyuDcYywXX+z7oF6d8f5rCWyQoneROubhvmXNOCKebeuOE832qK2SEh9pCG+GvPRej/HhXU8mVy1ID6CaYxQPswSxQ0ciigP/C/m2lGTt6LPJ1m1wlZn/SUS7rp6pdn+J7nOrg/40HHL00klU4FAEbKpbHHet8RfAaCG7ljCqT2gRYH3OAkyE5N+W1SyXeyPQmO0KDQlQRuzodlxQYwAagJCM8euVqCewghgkLhVaxqXzO1kU67NPoZoE1vD5h7vOPY4lGSIMrIQ0scoAyaV+IXMxEvmdoQ+xWMoKjg4Q9ccfPrM18KEnfvImLZBEigV9zX/sOe7ROJo8u2EkaUKHOmfZICd3v/HhDNCRy2wFQujMkqa6GXGb7VaDCpP0aN8nT2kD9jg0AQ7tj2XxSW8VSnJjnk9VN6IZTklM+LHPu1yngbxEI+t+/XOS0bK53wpHJnW0l7t8Mt2MDjUrc2GXC8lkl7f/E4CtkzDrB38HSJzXyCDeS66tojMJ3FD0NZvn4hrnTB+SdETwE3Q2OCkkZD0GV67wdGyNGgYMJp5uOmU2hQq2RPwrXAdfZ3dbMfe/+4ljzcJTLwkYCd3abSqZflBtdMcwBFzPA4USzl5PsdsArPCi3crA5AunOGL7S/0l8YvkorhZe7A2G/Lc9LPflgkR+rbtGjgALVAEN7ksF/9OPhUAqCdAlA0GHuUKvqckyB7Gud5QXnuvwr3lwr54pJfVS0ClPPc3weEEv3KNJ4eymx19zM2OK4ZUaf3Sp2sggzyiLt03grAwk4+QuRJFzd5adE0Q9FcjhBFSGm+cVaSekgSdAM6EVos0ytR3fO7hvWZqQ2hYmGd3TV13zudI3r3e8xrrXVXPeA4YTEZvxfxlNZOStkiJ0i+HFF+YRTjE/Q0jSDN1cjsgBPnq2TWzBcHy7pi1qbdxreengech+mbzfYtyddYQ13/xiI8r/+1ue+TkY3F6eq6qQaQKVd8pIdlKYOY50PJWnZgO2fTrOTdRVmQqo7Iy14VxeDo89nR/bwpQg/utPMonk8yF6hcWkQo0yxx476UjxeSkCrj6WlPISQKHL4gVP1Nhk4a9UlTXqndN9mslqLbv5i0R9XENJmYYNqokX5l6fno5IB4uZnbs27TdYfu118h8m7j++iWAkLoyNScDRvW1LnybGhqer/x1BpZ187vj08tV+tIZbjiO8wt8iK9TAO5D1+iyTSCkiyX6B9lj59bpFebchsL5fcR3V/l+PV6qxmRH3yQ3XkCU2ppwGsJSuv/1KnK2LUTQ9koghkndWx2v+ca+P77rmc3I+pTLVa4gpSQ/VKEfFvoRERPRgml/G8k6r8dyCRcwA72RYL8JZgMz9sPBvHsMCiP4YsjO9GoGcitwPdzXlL5GNRWDbmvmMLPrFDt/KGUTnByFBA/30rulcuSOVLMelJjFS/gcJ56TE1TlQHqtnDLV6ZOaVRXC5wXrYj9pnIxYphwRMOrChDnbd6zspN4IVXOQ9dPhqBYkQ+CJ2aW86HCh5MXYbwMx+r0dwKdAtqnWXd6mjjwAVodYM/4jo7z2UBZH4hta4BBiVPHVmSDHuyEF/Xe4XHLR+3vudlPGO5/q2iBh0CkwD211x54R2WDf1QKQ4ZGA6ONLbu3mUtMZD1w0r17dt07+IPE1RjCmHGmYZgBd/5sJECAhV9WFSouuWuNwThbW/cC6D3pECXEnpVsbuJ/eSS8UW2bUThhW2Bk2f63UHHnfvEhmi/nhsctusNz5m0MOcjYWkZo54naM44OZbMXi7pb75V5O+UeNfz5GFazBsaSeeZmfKWXREB4ezLzwkJMnw8h4M/h4rboXHwHThWReM3DkyJ5s3hphThxiur6kb2Rl3GNu3+D97LkEfG6uUnqqgP0VrjaUNQST6+Hpwor9kMTEzivtaoDphCbwNpzwaZ3xy+YtcT/xI3LQekMh0nGruB6s+l3OP80piAWrHjHx/Qm4NZLRk/65PnN65i7BOnUACFMOtFkj/O/o8VX9AHy3oGM1aQipFb81q5HTB54HRtuI/kdhrnaqrIl+HFASSiHJm2vXdjmhc8dYLNoqy+YLflUqRro1HZLytZG6wUtRAdZ8k39uQohp5HU9HwUOB3MyrLZUASoDdXaYrv5E8nf6SNR6x4jDtGxz8gnS0DXSdAYYIvxFQ3vBIu27xdRQYlWL16TFz8h4UupGS9OgapddHuX2MuhlTVTCHQ828Mtbtjej8Ugr59ojWEUdJfmd4MHDKwGc89+JGxpZsZXGBjDEZBjb3XJENYbWBZ8dQ5ljXsfftH2BaFyYeto1rFjoccgpEkYS0VJZyD82S4w+bxZtPGdUPe9fpognUH6AHSFx9OPK2OCSEqncuKkd/2/FszHitErP+D/pPsHPwHaLIVXrqODnu9PJmjD1R3xbfzJNSj/tOEz54LmkZ38Xf5EVwE6y8DWHJh/YGt+mJoJ7d+ELJLQWtzO0FCxG6yyA4HuJAfCrcjfaw21RpBHTcS7qKCLTM6g31fFOiUmRHObmPNPV3h34cbIv+2OVvKZNLOEKSlhbm53VlIwT/u/jTRfsF+Pi6gIpLfAEPb+48eS/syFq5jznOyRB4wUlOPeO+zoHXTSAq3jOh1G5Dp4zMIClWzIKKF+gy7XdXebvbLrKNP5iHRUEWlnK5VxIhzPL2uEYoqrElGSqJFqOjtLigIcYhBLOSrsHpH/Tjamz5Fk125gmEODkmD+pYAVFvvwsfUx5o27sjs2WgFDdnuIYbsX/CoLX00Oj6ScBbnX32oAT591go7a9M64eGZN0vB0fLoBOiTh36y3MYQPagKuAGbBaCAie02hbvzn31ntWFhe/hNcbxjLwSL2nEBmc0GEUOZsrrOeaRwAOc1c8kVct3LqMDfW3XhZUgirkubcn1EMz4qG/4anXht6iKFdTsV14xntlhUagQTBTbGXm3aSgYfx8c03Hzk9hkWOMg4wrpZl80umAhDEofP+MSkNmopRFSRhDWopClFWl/N3fnTtJ8DNjfg/1Do1KpVRWz8JI4TKkUgAeWiGh64/+OAlwEXOrw7Deod/J4RaF0IX1RFipKMLZDhjbNLjdv7KjBCtCs8Rh72Wmt8KtBod0OdyqyT4kiklc6SJ/pXh8Z1+ilHntIrX1k+d5cjnL+Llt+MA7WheoIf/SYFer9bBSOxaKmQnTD0hFNGmdYWmZ5bMACyOBuDhnc2E/qt0cshUQRIyK0M62tvsb1D5gL6JKbNIBrdsS1j37cwyk7WWDpSp4cplS26MFv184qNYhR8RsKp7B3vKQWqvkaIqU8QBRzrC08Jiar7Hhfvbg1FPDgc0Kwvlo7XNs5A279MsAgOEyD9YSWSr+mU1PltnfV/ZpjdKx2s3cwhhfOcrNJlMB08njzpCuUaEVCgvJeKD3P7ex+TlBOaIPwxORKfWvZ3hfDuIHkH0ZswqkU8v7OnTU8W/TGDL/lVDSkjMl6FcfzjZ0f8keijmqHNEz+83yNbzd5Ga5948OJBm6CIlcePNLoyl3sULVvphdy1UmwLOh/JePTR7Jvyt8WpNNAmofNtiKppAn42X1zMIUe+vNCh5bpdWCsZdWG2o1ujXPdSWAgrABUtqn/5BTr4MYKxx5YoB2lTltj3lojtaEcNnSBctPu6U+uNBtLjLd7/OUHLSUawq4y+zrvHrL8zzJBDzRA5SQ5eUN1FJdflh8MqZjtJ4cXiuBKn8tDgG9mmDSveyO+x8yC4q3Aq3zAaxO9PUrD08UW4etsKHeRpJ+H9EY+Y8j7WOc4P6UiT7fFKN5sbH66Pm5hpPht6QeF5TJfm2FSa4QED2hWrec7mI2zWzt++fn0rh2M/jX28PU5W0rLxt8Gy8Jlgftj/Afudd4/ZRt36IOQSkU5+9DczeiaIzWFqiywx1XU6SPTHilHlNjohYTaKuP/mtBxC6fdR3bIsiC3Fv5alzRvcSBZglxXUYsnpOZS5nSUG9EuxV7j4o/VS/QCfnOJ3b0SMfe5kcYLge5UPaRfQitIBN+3C7UbRzQHnp3+Vyx9pqDkGvqiGRz6qqDPgenxMz9Um0ITv1A9RxQpbnEMi0wacnyCzFfVoENcVsyR3fdi/GSEIUubTIfwMSsp16yPtje12wKe5QPHJksePRY+n2QgD/JJQUFXKEvyw6wLRFtyzLTAuKcG3syZGnKTQVRWfAnGSrrzFl+WoGJEmoIBKA2NPUbwJE5AU6yA3/I1wuHynZam5z6wt6MiG90BhrFfv7XSmP+7nfZQ==
3:31