Chapter 5. Chapter 5

Step 1

Work It Out
Chapter 5
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

A table with four rows and three columns. The column headers are Absolute Value of Elasticity, Name and How revenue changes with price. The second row has the absolute value of E subscript d less than one in the first column, “Inelastic” in the second column, and “Price and revenue move together” in the third column. The third row has the absolute value of E subscript d more than one in the first column, “Elastic” in the second column, and “Price and revenue move in opposite directions” in the third column. The fourth row has the absolute value of E subscript d equal to one in the first column, “Unit elastic” in the second column, and “When price changes, revenue stays the same” in the third column.
The figure shows two columns. The header of the first column is Inelastic Demand. The second line of the first column has the absolute value of E subscript d less than one. The third line has “Quantity is not very responsive to price”. The fourth line has an equation in which R is equal to the product of P and Q. There are an upward arrow above R, an upward arrow above P and a downward arrow below Q. The arrow above R is shorter than the arrow above P and longer than the arrow above Q. There is also a plot in the first column of the figure. The plot shows the quantity versus the price. The horizontal axis is from 0 to 100 units, the vertical axis is from 0 to 50 units. The demand curve I (less elastic) is a decreasing steep line passing through the following points: 95 and 50, 100 and 40. There is a horizontal dashed line at the value of 40 on the vertical axis. This line intersects with the demand curve in point a. There is a vertical dashed line connecting the point of intersection with the horizontal axis at value of 100. The shaded area between the axes, the horizontal dashed line at the value of 40, and the vertical dashed line at the value of 100 is labeled as the equation in which Revenues is equal to the product of 40 dollars and 100 and equal to 4000 dollars. There is an upward black arrow between values 40 and 50 on the vertical axis. There is a horizontal dashed line at the value of 50 on the vertical axis. This line intersects with the demand curve in point c. There is a vertical dashed line connecting the point of intersection with the horizontal axis at the value of 95. The shaded area between the axes, the horizontal dashed line at the value of 50, and the vertical dashed line at the value of 95 is labeled as the equation in which Revenues is equal to the product of 50 dollars and 95 and equal to 4750 dollars. There is a leftward purple arrow between values 95 and 100 on the horizontal axis. There is an upward purple arrow lying on the demand curve between points c and a. The header of the second column is Elastic Demand. The second line of the second column has the absolute value of E subscript d more than one. The third line has “Quantity is very responsive to price is in the third line”. The fourth line has an equation in which R is equal to the product of P and Q. There are a downward arrow below R, an upward arrow above P and a downward arrow below Q. The arrow above P is shorter than the arrow below Q and longer than the arrow below R. There is also a plot in the second column of the figure. The plot shows the quantity versus the price. The horizontal axis is from 0 to 100 units, the vertical axis is from 0 to 50 units. The demand curve E (more elastic) is a decreasing flat line passing through the following points: 20 and 50, 100 and 40. There is a horizontal dashed line at the value of 40 on the vertical axis. This line intersects with the demand curve in point a. There is a vertical dashed line connecting the point of intersection with the horizontal axis at the value of 100. The shaded area between the axes, the horizontal dashed line at the value of 40, and the vertical dashed line at the value of 100 is labeled as the equation in which Revenues is equal to the product of 40 dollars and 100 and equal to 4000 dollars. There is an upward black arrow between values 40 and 50 on the vertical axis. There is a horizontal dashed line at the value of 50 on the vertical axis. This line intersects with the demand curve in point b. There is a vertical dashed line connecting the point of intersection with the horizontal axis at the value of 20. The shaded area between the axes, the horizontal dashed line at the value of 50, and the vertical dashed line at the value of 20 is labeled as the equation in which Revenues is equal to the product 50 dollars and 20 and equal to 1000 dollars. There is a leftward red arrow between values 20 and 100 on the horizontal axis. There is an upward red arrow lying on the demand curve between points b and a.

The figures above both set out some important but tedious rules. For each of the following cases, state whether the demand curve is relatively steep or flat and whether a fall in price will raise total revenue or lower it. In this case, note that we present the elasticity in terms of its absolute value.

BdZqHcIiEW1SRC0l7nl3z7LtfNvtGENoqj8urndsUBSzsIZiPmu95bZa+mHA3++lz2ttMqF1PjMEbcGL6vos/bGvPmxdeMkqvJI5ITy02hDepQ5eZgWfT+3af7T2b9cRWObm8o/5osCNa3rYqntPWCi5AuqhecuAfAQxGQBby9EdeGrr3+dDcd9ox+iODAaVNn8ZDzvTTfIIX2h/gxLN4WyWKZjHXno1bWJftGVVMaYwPh/vXDylYhOqDVhlSGZMpC2xPi8Gh9cr54WhB3MueJGSAwjie/GV99s0SDhPBA8JRO+jyXGOfrWIH75BuyutpR70YtysCbNLCvhgMWhySgAjH/vbVgsM4kQzGEf78/IQz5iGBPknRGcLl0yo6ShNmS8j3s4cRUtX1dElijVT9H4/y+fn2Vt6a/Br+FKrj8l3SvWEQCRymkR7ICfixKbugEm3jSCW6wSPdZVoPGXgj+Wj4U1ACH4GTXopIHiLDNrj1T+lndeJdg/8Kno4vPdiuzW+l4UDGB6AhmE0cfKXHRljBgHlnN5ZYDrnmFRjEvCn/gKWWv4YGFrz//El1gRA/grhBEMnBUG9OL/qOOvPs9fP7BxUZG6GT+YxZNEb5P29OhgUJHViTzz8xlmrfgpDKA2qTG2rBkNJitZK+9tq1CzDKtmjIWU1E+hdsrh/hW765aOqprH9/tZ3gwkvArE40F16plUM2iV91hO6MkR9/HOSMQxkdEjIhEdHDSG+UuY3QTolwznUTVwa7kbX3vXnkhFBXbxRZROYnznxoM4ydoDQwbisOcHdoXZ9svCwEgv1HO64csVrtxLhsskg7IchFlYkl+IeCnEirjAlnITlW2EPYWXi2ejx+wvulnFMn5VWf2mqTheovw0TxX4JOb8C2+JOclCym2wEKWffBTx01MUVgd8NwyWLwyA5IOyV9N2Xs7lhxscXLwwBCzKGpiSZT+DS0tJXdMIvHNVHaK3MjautHUqFDoCcVlkpweMaEJvLPERi6nE3Mc4dS1+l1Q+t7U78rgGz2Wh68QrxnnEsWGy5UO+PvS/axYstSiUDpOW9oCBXj7mEfTyogwqLBNmFEkClgg3Z2N5/9ieo+TRHTp65LnN+YVkT8B8zs+gC7cljU/tQqNfKl3NHwH8kyHy+DSg3trIIE3SCBea+98HiUEsgY4tbN/uDa23fBjhiJ3crm33a9eUqNubYOaNtNxUDICF3vPokzATT7jUO6z/zCT/dT4m/gT2lsVNB9xrj11b5IHnF2QjdpVW0lGbwpXBJ0+wvzXwn6/xc6fXU6WbtwFdl34ZGnAbTr3lvmVDJfcKVoaXhZgYRy/6eD/3CODfT4n1RAhgj5hYhw+mi10lZFBIF9ikRLaQUmP4BXuWLbkGu0+Yk6ewJ/pB7+s0hCDCukcKjqVrs1uloPXbVxzy+kKtWut/9nWzieg10v8OFrSoLovB/PV32KW75Y3Gy1FPNfKqFzi3V06fDJ8w0Y1oNwlLIIxpN/dQlGbGn92r/vXQGI5/Hba6KmLc5W2J8d/yC8BbN1uoCJECNAZP1BdiiacxlhjYNfCgR/xYIOFsBY++FGqmD+W6vPQ2iecdbW08rfilg/udKrYUQtczjZNgqGGDvsiDmXFQXOzbUO1hlK3ht0/P7dIHTikLEEUIaCv1+c3C+IHXH28CVBlkRwU0HVYe7B1aK+Mpaw6/jMsVIGLHu9SOwSMxowfP+9jxUqUW5n1IStvVa8ptMF2U7CASKR8P1D3ZDwtCc3WyctKKidPPbfHQQyna3F99nTkUCMOKHy+srHUfnT4wvxG142sHksbVF6rqrYyIQj8XJXHMoJepm8ly+RAFqWO1HtvFgsRHCZRiypuJQwOeBuRWH9DHUWZ/mDYLReqdq1VLAe0G8OZdG+vag0gsqZ/YK5z8I4M0FKnfbHzJoogRSsRnB9y/mPrkMbTxR0H3VI5hMiiqto95WNisRlvo66JXene0IJRM8R9PmHgN7X5t8mVwE19AuEfSZywdZ0TEp5nZyAToWFxonISajd2yTShrIH5S7kJI/YbRxBEYCd7fAlloSZr44CmAHSUxMeMsAw2QfKrVoqhhPeLp5g9VVrvqaWwgpQFoB0b7Q+1XfueZfP2eL5uOBcB6mihbtpnxvPCQibXA7OiN/ceov04dExpPufp87TVvgO1tgv+R31Hd16NBCs4D6/aiPNB+oPcckW0zeooKUJbMnDX6CfmY5/n3Z2TtceS7GOFApliEE8LrP/gkvg6Q4F3BPk5PvtfPYww17azU0lEQtS3A407ogGf4odF/6T7oHzK27LxJ23b6NE6EREjCTzU4qGeEeUPkPcfAgYCsm36/zQaoRo4MWEkequFtUlnoH+G0LBUEeW6yLZAT7r2VDKg4mtxxhrEEK4+RsOJiSSBp3RWaKg6Q2bgio3U58osahBYycxFP4ehsVHMyd5fVcf+jjofQubY2/7GtkHXHC1McYHZivSeVDuRtDyWjWGWTVzawf7kJgN2+2FnVNNFUr+XQlYIHyM+5Y9+vdI+UanRVpalu4qIyPtDxYgD+J2+Z4Rt077UGbozcyfBnspKbzsyS4va/5ErnEpFqBzBiopGfufsqKc4XmB4ivP1kt8k02jT7A6cKbcMfnzz1d/9IvrDulYnEzZdgL4eM0BsyYT0Tqx4/DkegOLjtyRCFZ8wQyIDbW9prJMcywkil4M7b2sYzIGPbe4X4boA7j7TMSd6F/pYFlwBAgnOr4L4s=

Question

prXFaIL/Jzokz/kZ4mG0EdDKjLvNXGQT7PSvMKwaPCqE3K3X9NWNwd7Y/Svr862Usm+HVCLN9AGlTOeLKZVeh0THRAAiDkiulX43xNN7wZU70bJGtd39gnLcbTtCCtBIY8F2lt+Rs1IHipBCg0DfY/JakYfRbgnKcSbqulk+G1Z5JBuwWVb8NwoksV5N72RByGAP8QysMcBe/yXsSNpSqcI+VSmFVgq7eSWSXJ4fnAfpuG2lb38lCH8v9d0Ea15N4FRqltCCBTrOfoBsj8Jv29SSdNQ99Nu7kApXtcVNzn3kseDvp64aUB63ln8yDzyS6+DKCVjSXohOl8WOlZZH9kMP5stvDraWIzNqdjxINJVfQSWSGjiUJGESF1YxMPctEkiZx42bg+izIcuv83T/vBDXuyKQqzgcwoixZQwbnZPgbNinLxmsbvTbP6z2OkfakoeWe0wx3Ub5/+E/fXpw7zHceN0TDY0ilRFbY2lU4j9lL2Xt5wUQoyQptLTT4bZZ6sSjxtDIooqQw8rDRpYL0z4VKciAqdYve9XFnWf2MUT2woWmdJInCEMVFbMGkpP8O7LYchc1HZIYoIeOWae4fogAnyzQbe/qNk5xOiaLl/tZ1JMPQfDqLplbgQ7jbyMUZOXg1NeKQ6Oi13uDhS6We4w7tAka4ROhBAReTE5VDQ3h3jUAD6xCg5nHmXosRUDXWclTWB53FV7CNtmuCY/HtS86De+8//E51HrsxUvu5nWov6FL0n/ZS/O7c+GoD8c01ncxHqRzQ5MCFYfUWcUqciEFw4wPtsoWbmZmGrmbjoXaGBsuCUH+pVjk7IhYW/2oDEg3J36iArw/PARFhWchfzCMhTccQ4NEgyLwh+mxqvhk6pmCidRkEUvkPfQGeW6CfkA3+aJMU2NRJTTbppwHvV5XCrU2nn1ubTF00Ut0UYwMiPtZ2Ick/VYZ95GNUhIbQcOQIKIipLHpsV9c8MyEeEgHnAPSWj7Cbsf/pp8ek7W4MvJPygTZiAeAR3MDUiV1A5jZcSdhAClEGOZXR6QYveC5s5gxKyaHoHnJSmhZmJmMCaxc79gQpMEd3kgvNPTpUhy3GdJo/76GEcHuN9j2Er16armnOknvGdAJa1gUJWwoxVgSLTZ1rne1EgcJo6XO+9PfgPmU+yY4G0OvDdaWaRkI1Mxi94YKjVPz0t7RqqQ954Lb3eQOBUveUXJ1Gc+AcvdC5kkJgkSa9FGjep2VQvvSvSGN9G2sZvW5GvFZGQO8lH29GDdSjIUw7BG4S9FKcyCLAGpHju/AUAlYulpoiyzpuxZRajIEAdbzjz4DUha/QuSVW9L5f4tnxvDTVJgt89/NuwVSGajGRatx9qXFAo+z1KJKYOHPoCKdyyw1Hbtp1lh9/MXj1bWgEyZVaCKZwjXouO8EhfzF7A4Bg3VmAyEjSgJI2eCS2dPUHs39AdA5vY5XDh1vPbj2ZgZ8pb4NIpTewlgdE/ghT5ATqS/UKkI3hAOePbpyUrVSd7VGjoqOZsijty/AcGh35UkyrzWASafYzm3EjKv0AOuzwr073/rYa+yhOShDCEOMvrV5e75r5J9HB0SY9xA26wpMEwBX81fYeUiPeXBPZirwVQfKGWdbq8yM2mz0rlp1IiaCSq4vUAgMZkw2jmnbCSg8f4FT6Y+nlfUDURuE7+9IYMAB/ISa6lzZzRwM7lVM3e0IeDGCG5BcAozNMBj9XBQhBwemP2GwqrQ+mKYdq5wZH7G0sSI/PSu2RRnmvlOVh8G43eYj7sIHvkCQF1Q2vcwUgcM2Gm4NcG7yImLpcEpoaBX9RPN5KlB4d+qmK4A9dPY7joa0Ta968D9UUVuoemhk8HltbyCqZdXZFcpw4HQkSbb8QuCdGZeKybUBTdxbGXB9G6I2qUO68jZgx3xG99qVMjNYkRX1Wv0p7rk+MRZ9Rp8dZ9Yj6QE8/cmFEefDAXgYj8//KzaoxwYQ8qxbusliKAIY5ksf6Ws6JZi3UTPjf3E9WQgaf8ITo82SIipUv+bqLKDhblmAPBl7EVy1QOuyvoeXJuGgvRO8Q/1NWIqa6e/adfj5I4cFpyxOtfqqXkFGIoGRvBOQEZUHZGlEJz8dOie3ZoJncDKeCWiX+7t+ejKg09nx1zVdBeLzMpc221vUm4uz0VItQfroL2SlG/31z8dVOqmRzFz0prwRbfLF52UrrFzmu/QmcPdyf1fXv30v9XQcz0xRZAsLjYLBLnyszedEP8r3plZfCk8m5WGLWP+w2LyFu796AmflzhsfsJYsqlZx34osPbosBG8Rw6QKvFXVyQMaohs0SqRVGInrFvpnm+C/ivCOBE5qXgro2jlBLSLo61A4n7H4MFLM1zcc+xSfV+OT4jb37hv4/SiCoj2+2CgUYaH4s7BVXdHE+5XhWIXYEBJuiThNxyBMzQ1YI5tfNya4GT61LfVsoFWvem64OfjGmiJc4X6p1V3AH2trN0gFi2foDde0uOXEifcg5vLH3vhfR9D3cKjrFI/V47KiXWBZHMedHhHWWUgRYdwBYMRFG3vV3QgI/HJ8ZsqRkIdXk3FZ2UDBpEg3d4h+qV9FHSqOMUyx/1PGueU2YtTt/V17cvVP/5xpcmftRQgAL5vPdT0tzMuCupo9EewKb90sjxawAliG6bKswZv6JXt40QXyh8N57CmZuiehmtp2Q5tw3ds6P3I5IaPJntwy659hT1c2YW31uRUz95+YsSq/Ht0=

Question

wRzJWd72gv8tF915jofPNoNlHdSWnocVXiCG5+mEQVMtVxbMzBBjHj+a5ECh5HgbG0olBH4XdYd3p2FVLkSd1kZvOauHrmRw1wPaSUpU53hElt+l0q5KtdNmB22PF1wrzKVoYKyOClc7dL0jKtAtkbAZbQBaisflanJ8ZgCZ6tM8swO0tsZUwNQU0AjUzyqxWoPEHDIbVNiAVjP4M+r2Hizh0w5k/UpEZuGebY7S1MiI7PXaW5sn4sKEEXuJHqPJDeAhO1Xk6C1qzPWn3iVTaiE5R+am0pvY2NYgdLB/2YDQ2KrQF1tPwXLkUVLQ8+B3S6zjwBaxHdCxi2qzqn0JncPDdAO99vmUjNjZXhCXRoOSBsCSdAjOAuAdmpy/WPryg2W5FD9++mYYYjyx4wM1ASM+WHXhTCtN+EFnUfI8rSpkir0oi9SAziSZSv/Y81QfDl4m8U/uaLyAnB2MHXPCK8jVWQuAP5S/iX8gXG+uXfkGIT2lJ/knYyBdECgisTnicsjP5omZfgM9/NICCjlwV2T50OadTQ6BYFy/13CX/N8erxbJespFl90s9HCAjZVdXJt+rDjqqJvX/RBMzOtb41JZkRmH42YkNh/IhfZp0DJzOVwbmTYpojur0NYe0K967PzxddyK5gzBCWb4osGgL060cjzcezLrHd8l2TO5QjrB3Zpj5fI78NkCjMx4nXkpJhgxgp38u+7ghu601uXnCHOup6VWqPOCEHbwi4crEBH8sTGHSIZoQvRoAuEoyFYZsb3PqNMau37cjwfS1wR9CteoZ+banZQDKKFE5ZCdp6Zf4vSuxYwOKj4KIzmV/RV5F5TczQb/MjDw+DXDZa3XwU7jKbBjDBjiWulHZDjH7PvTnzlzpfS5nCvtGSyAFrn4IgE3HryX1CCpGYfyS+YDSwJae32IBBX6t5jW+Ifnt0vDdd2sR5XCzyy4rjqyylEdZeTpLnoZLM4CrJ9d+PlN7YQ7JAHJKz17Cl30Uh5dqbEoTLibyL/V0ovX1TFHuTlh6nlC5vdQmFUEjM+KDTrQCAPlgAtcqZVdDTGewK28Ct+N7DMpq3mAWq/UZXujMpWXPCdXaYJ1u4JxtkxfVe+xeCwf4Ei0yqeSmq4gYqVoYKbsAsScUwHr2Ay0RZkMG4iyIJYfDh/cL1d71YKk69gwXmrqCCiVvnMU04ETKY0lvvawM6N4H6yBBxxWJ5fTPa8XSWY8j1WfpPqbBJYKzNf+YQAOFb2gjDg/gmjbw13/N4f8yb/5+JRw6TkT7NCLS/+eBS6B97zlYAAHh72F4kT3YuGD0hfVjkDVNDuFjVe96O1ccmKiDAWGDPJrhsXhcWJufyjRj7bLRl+/Gc3odTrD/C53FbPw5HysDoCKASbQtRIgN6GHgVo6XmWX/PoVENhJXBCulLt08yRvLvRZS3Q29KwHP24YW0kPf4JpT0r1oyHvAQHa3OWSwazhGQHVTeQ9RoSUgczIoq8/7QE99NsNW/5v20EgmSUG5nln4/leA6KC4gLBC0MWUvRMpchYcupmfFSmO0/HEHounvWCK41CW9KSn7fgnWL4INKvPOLHRaC5JAkNvaJPvvRlJFiBXcRZ3EWhD46pm6XTDRSn+1wTQkR2zRmWhxApkpJ1oR0LlJNncOWovGDNHq/sElYQvbvBHS4gCyz0zeeQEJVbLo8QCNtcIYA+y1G3wZoz/UmvfndQyBTCJ3zJK50rn7GDnvH3z6scSUcJniFQn57/vKU/M8t3CaZK8V3Kharrp14ulJ+aw5lo9hJyA7EOiasuj4BqZI+l1hRgbZ+dSSCQnsxYhAA+rlxbNCwzlyYk0HKBK8vRPA4Am3/uGfSlqZIdo/CiAYb0y7xpfNnANxE1S/JK/dNbQSrLRj631snWfX54ZKa6q5cIE2mTfaS+5+e1HNCpzQpCQXP95Qc0+NOZh2Nb85fL6FTHg/Kz3qwRzxRqkd2rQrZBqVmlNMti7+8z2W7BFB63dqzKmvMsBPxamS4GF5lnWwJRR3Lq7enEXUa0+7OceU6djTHU5Y/EhHLBEgdwl8MUMv2S8FY7XvhtLeB6DnT5w/lDbg/ubsRM8qifNSgK7nZ8NjgCkvMUMNfrdIwJbI6xeUPD77fJQd8oJT9/4c0YCV7VHuzy8wmNZdij6xRK6oFMEPOXWA8PuW8PQ7L7hfBD7ZRM8Yirx96mA/Ys+gl70vMpP59chLgm4DGHb9XM1tTquqseNTI9wVigwgppeF0ShGVdcgIs+VuELp7Ae5Ibz3Xkl5UYU9/4PmuDs1ytnsD/86r96wsBpJQF1Qfj/mCD7goll2k2eJTQloVXAn4poYwD4gnm/JN3En6/ojIjkbo34N43FV8hbLQpy53O++XEw8rjRm15bxVDQgsyL+32Vy+/2P5dgGbuCOX94BC7GLQj8GLjmMLRtH7GFub0xZeZPPDK9eLisbF4vFrBUxaI2XcIy2zEEtAK5HcUyJJoI+WX8Szvq8djCGtCS9lRNG/ikE6o17vID2PnRjNDL7M0F8us82EDuUjWWf7XDWbIbl9Q4/e9xhaN6I/JHb7sb9rxv1y2Wo5xl6zjckzodrJgHSfDk9EpaCsU7+b20pGcRI4uDC3DgmGOqBwSmnbAXQyr62Y+jEoN4TWEOw9iyI2RAtvlDQmJrBi1EZyliY3N/eOOT1otJXBzgexq1zUMo6HBp9OlQtM3DmC4InGD06KV2CAQRbO+m0EVHWfM6RUDcN9AmijyuQ==

Question

TIAZeWMLCDr4InodfdbSI2iJTDRbOxIxmAnd6tdulNRcwJpKjmRGzjn7o9FnhnBZyIPeEj3AICtPWbK47RSuIHbp5PcroOGZPwzEcL8a1Ph9sWxsSPBpoK2gQLhw2gL7/LvfRbrD3X+8GCE2WNrecvU+5j5MvHC6eNTeC3kUx3h+b5Kl5pEIelxUBHeRYYTOCygGori9ZEwRMzCYY3coj6XBHXxXC4cuL6qArQb5hnHazx/O83RvBWLfnBjRudjGn6KaVb7lS883+7QSlEPP6IcIoe63kORMKgd2XUUJnRwGGh33iKqIkq2TzRCbo96tUimS3rV0O+xWI8HmOBbPygK/5kYp1bvtFtcJap4N6axcfAAa+u7BpAZlymFK1JmD13qfSfsY60CDCmZawCTotwDymluKK5y4cgKcC5l7UoECZAq8pSXhcK2xgXF9bBzi69BArn7Eb66K0Ee/9nwBJaiY7O9L8JkBU5cl35xBSTzf7HjMLcGoeVm2dtIu+hLURqTIJltoLTBXxr/0fFuhTOASFs9NG6XVyi+31vrgbNqH9DPH6JSM4SdWSbxdJu4W+81npiSqwFLvHu4PzSe3EL8UyF7YG4nQHAawM9bWcVutqO2GVXmcB4umvdza9wmrk4xWgZ1fp5ibIyHibwyr+bRrhVDrBFuW49PhxTFY54P8OAy+YZ1Co9FvkOB3GqUFPaNsEk9Gbz8wsrbncQAaOs17JY836/zqr+iyiIHFOyh4rcEk+Bi3SrT/8JZfnh7k/lI4BPshDsmOUdLqPMtR1tCBsrShnu6J+4Yh/96+VADmE5SDXBiUo4XQi/2ksK7E1jyfkVCOrSuMe9AdyUP661pcohzJpDn37yn/fVmR7eGfTFtIRNhMn1agvPmgJTLZJB9kRzmPi9SbgBwsPk2MRrEwV2m3QHDrvWzuMu5BHD1oMhaIPDBX5LoKs1mhVFa4RRNcyjyHCrmwfNKjqCTG0m30B/hQ0vfmc2FH3NluXDlfZzMZ0tLLkINP1CSjUYPi8A+G7wgrEi4QscKehLSvFx9ZHmnqB197LVmbT0OaqHwoL+bl4FWLR4+6olU2ofbC8GknoEEeSPPOCtiF+3OZkarNd8ltCJqIo+MFktOWbPCotW/Sqb6C4zLQmn+2t1Nc0kJekQCdcOLubzdI8H8VrvlSw89BhQ0zh/zkWNnVY3x0HLeOIL9EcZkm2IgzRmLFyWvfL3Y27kfUBe5TmWfEoIS5f40H0kukvafCUuksKAiNIpDs9xtJyvo/JFzJOqf14Dtocrzpialim2S9g1aGuqeadlYajmb7ZC3sdlHtKdxd/fkzqUkzJ0VCFQBU1UjI6UwRjqyEgoTSbjxu8wTHVSpdxdYa/EpgoE+5Nhm5zvMnY7TR5PhsDK8dhDxqcRQNDhFf8jFjWzB/lKsl55d1GxCVLMm5Ng4BORtTPd9eIO6zyaOF4wrhpuJj7kSo9dOb7Io68baXam7uMZVcnDycq8ASn/DRDqTmXVImSMKk+TbZGU6Cgd1sSsHsppE3JCIz3hwOKoEmd6hB/F7q5rWSJbC5ghj3Ue1zglyZ/sRLiwq8iDH/caO5qqJOTZSc/AesD43v1awiKhKPDo9CRZZsJKL182GCFduEBg3zjnVUwnU/sFQo2/zYCOtTtpYiNchiLZQW6WQSDTwlCfRlK8gZO9EqUrCbkdnlaYTVsY9+CZWNH62VZEjACRrqBTh5DEDeHc5zs9HOg6Pn9yh/Ut9ddIwhzORsvRbEekjSz2QIQ6zuM2UT6Vj3Q5qlMfJ/yN0aIvMfsfJOf88nM7/a5UTTFDMU5IxrWr00VsEbcfLOh3hTU/FAMd1hJiNzsvFoWwtscfAtAJ62fC58heTxDNhsvA+z0ytY7BOUYQmdgbt1jlVAQny/Ngs0a2NcWCK5PTWA/jvm5YgdgJ1vgk2QUJaNWDAotpHyJ65GIf2DRtMlPbOi+8ueIda3qS7DEKXFkBo1FNuoZyYlCrE0fVwZOIYYc2ciCenz4BokSo45stYzEHvhrZMfniLJyu4er3KxCxJwdp/G+JRJZvyNMu2Fn7UpShy/MHDDpJ+3XcCNJ4WB4K5lSPe4Kb/aiTpDvWmPJ1ekcYs8erMKUyrBOg+xEFQk+rcCQ10OpXSoK2i5qnuT8bEjUAwLiiRh8eGOGmre6UwBbRR6k+nkWpdNeOuNIKVJ+YiHAQZc815rXzs1bH4laX5ydkmoN5ehD7HTD0duKeiGVulY2ZKg08sHHiWL0UXRK1iRddrdUCVsvLzRF5N2+D+T4ZmrP4aEu5G1xPGRWOeG1KHwsqXJYit8cwpzx0jztUIXy7Zi+aOM5nRf18WWNggBPNlLFm0hfNetGCYwp+AM1HUi2+zdYQMKKHS11kCBfvoEb1OzxIhVUa8NaTpa6N98f1akuJKJlG+yIqWFJ57w/M7YtlTV7kk+CQ/04i/VEB1sHeulxIc3QEIXfNaNKvAzdygdZGZerPrh3fPNGqyE72V2Bg0q6H8CrT0Fl9OSDb62IT+TIAHyVgfdbLsUdTmUUVtuUkzchPo2E3WGkwz83onWWTPE8GYUgG/MF9BiPuVYeiwAG1SpKCn0n8lu4fQeQxuWcJaFZXDl4nQuTJoKN7MdO9AnG0e0o5oXAzxe0967M5qy8IAzGAwijZ8UTu7aDgPzQEOptoJ45B7ZDbZZ1e4smTT2yeXMt/8S4CdhmrVh0zUKqcosJWzTz1Km9UZHjxjceShvEgbB5LJAG4nHXkyP99Xv6Ow=

Question

8RR+SI4NmBzH5qwZFgeBKGXP9B42YEnYqt5JoZBMttG86RyED54PiKy3wmsXQU43gWLYg70ZcotO8KKMxnlivICktSqSUA0E3NumdFAho5VsrcGNOQ4ga9k8FGDKJQTyec+xTeyRvOQRto1WlEXmhT5pDM+d3Wga7KSaz2cozjJJcvyxfXw9Mh55SARYL+qhK38mZ+uDHw1WBRRROa+t/+dtVRU1ylmCX28DRYARIZvrhFnoJ7HKzk1dmYzbNzqTqATTOssfWoClrRJmAqZdwScl8T2jSBreagE8ziAdz5HfzGjCwODfOntz4iPKb2XBZAExN/PC3lSEHVdiUlZVzptzVsUSas9MNn5Gi5qNUg7MfDXTrfEmy67kO96HIdrku1qmCkDC+QL+sVCiIZBLl5dMBhDXQkx8jiKdUCK42UV85L3SeoNb7tQjWeWi2lk0ctpaR3JYUnBiF14Oiq7UMc+GYcbPwpUWQVAvheL0dmFvfnkvlqEbpJZVg7fmhdxG2Xsli6+tkHrCY/V0F5ie/KBlG7qD2tkcvhnNebfAm1TXhwtsyBc8o6H1gp8UMlbQO7L8VkTQF/CNOwSiVrh1Vrx5AzQI/TIfRBNy15E2nQbIEl7PrUTfXxakDeCW6tk0Dyq6He3CYJC/4PgTucivL6vyPKG4TGdwbXzFKHFFOmROF4tzxoocFTY5OIFyXhp/OMKjUfKilFffoexjHLLAcjlTCp8V6Wbzhcfs0kO7DNPKB7qvurLVfxsdcus4vPh7kKF7ulVRCpDWs6u7aqL72pNLz3ceSc34xtD5pTsKuUNEwfy9/CWmAFhRHUEVtFHRB9k5Umaro/3xG/6NuhM+kmlB7WtS9X79BHkcWhQc4Em/ugyOtUWBIUunGBQW6BXQvrMiNEzHm/zcWrbVOBqNmhnpkerbZXY8T1shaoZ+rI66aBiSKfiVyZV/guDp+rEd6EqOH8vrDM42Mm5gcYrgz4CjGn1bJHL8sSwjUW9sltKTkPHHtWIjoAK2xuJXVgkcjDvW7QlxB4xXeAgMZkqeCLDaZ+XFASVcjDdV74gzCiqgdvHcFBK20g1rYBalVjKHln58ptjtINK+bs3lXceG2yBAzoR5U1l2JjBq12wDdiZIi/0j/jZcyWRdaMYH0FbG+jpQW6TYEHloQUoccg8DgGyLw3okMI+SuSaMf4isn7wmtibQ25TvDHVooULEgocBoZRK0WaxW8ekCNSCTmFbdjCs63Mkccv2Mrs6va4wvcGbb+DkKjqsH30LA8+gdeW/uDx+6IaA3D/zplUCmb70HlvL4HLHfyAVHJGwclIH53HH4X0u5caNcnlf2yXKFC4VfSrNzpVqExCdnKhV3wa+50MserLmQvLc/AjjY3MrxIQ/HN8Q1ObVfUhYEc5vExNuiH0N5p4eVdoAp7X/YOGyBqE7SRbOB+pDRkZd1yU6hUZNk6jOEv3OxMIz+u9uy6DD6OWtwvD8JFPeTtWbolgnou1GRTeCm4W5r2U/YQicilE3EhiVsHA61B5B4tp0WjjAYz61Bg/EL0AVIQQEKygB/2Pl+dTpwzF0ye3ivayoJHkq2XdnGwseAvjxlZyBcO/V9N3awEKAm1IhjMFkAuzXkKcpYzsA0viZYkYdujWB1pSgonMVOC8VR6Xt13iwRs5wE1FD1PDK0+LiiGi6JWliJewIXj9GgLZSLHDE9L+nrIUbklm/aVxcaQ65Doh4UrFGKb7FJSeIU32iY1nlmPFP42c+lhIdaydleSIxZvIfaGT3vgOXzFRB+fV/aPXUfNyZlNdlGeSL4mqK/HmTc2KCZ/d+/xb+bRo+3axoH1pbw9IDdNmN+CJ9dBW6baJoNdy7CBWVQzpk0xVOJsrXCg8LdkZHv0DEPsiUZcINF7ZYyQZH5DLd3CY26GAI+y+JlvlCYqf/1WVOE69969Ej/tp3s9UpIdot5T1IrnJNInKujA69kucOfefTLYZS4uYrp8TlRBpKPApJwhPDH0mDfZo7iY+r1adOmp37KJFyHJUshhK+RZzo1cfFGirumUB0q8FzK+Z8ZP8oUYkM3/L6F5Z3HJB2ceASvrxeiwhpgbHVmdW6OJYX7nki54aUnr4LRkOJ8l8xPbInX9WYawSybIT7v1FD4plUk0CGkZygoFFuPlO0hTfHkAfWR1FDFvukLF8qa7ir+JYObwwh1h2ozc9Y0ZUAo+KvlUVWgo4cltymfcFuwAGUyt1uiXMxA0O56fHyuMbpvxtnNyQSBn8ZRbTxJwRaO2qSZx7ZL1ZhOg8Vhf4avR/yNQI5DTXFIvfykz5bjcWyBo4EBqImpRGQo45JKKItp15gKDl2YYPEckoNj763rsaRtAogMCOimSfhN15wmComp6UY3Rk0jYAdPtT3zY4ExmcZ0K4gsBJMAe50B4csiFYzEHJc7O4VTGmVpFDTT8SUwDjSY5+QiM9zKcbZ0LlNCW7/x4DgzXfiC+YYZl4joiOn07FmztxtMJG5gYVpnW8uwaf23zQL9ZXI7ne+qa4L3nwFZqR+/Zyp1rtBVD4AfKpWW2b0PC+i8E0t6AK1lSEmq1bed2N9TDGfcq3ggc/865Ye61gwhFaKpfiOZ3fueY0pG4BCeu0W+4jHfQJcKeti4ezeqiHiL9p/45RiTFmE29GC/dWief7T3qoX4Ac377l4wf6glGbdIGNw7w9VFvccp7/NUITjkkkbgJc2gX0MdHL31Tfk1Hj7M+kTtN/SXMwdllvL+D4z1FjUG+KR
7:04