Chapter 18. Chapter 18

Step 1

Work It Out
Chapter 18
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

One way to think about wages for different jobs is to see them as another application of the law of one price. We came across this law when we discussed speculation, and it came up again when we discussed international trade. The basic idea is that the supply of workers will keep adjusting until jobs that need the same kinds of workers earn the same wage. If similar workers earned different wages, then the workers in the low-paid jobs would reduce their labor supply, and the workers in the high-paid jobs would face more competition from those low-paid workers. Let’s look at 100 computer programmers who are trying to decide whether to workfor one of two companies: Robotron or Korrexia. To keep things simple, assume that both companies are equally fun to work for, so you don’t need to worry about compensating differentials here. The marginal product of labor (per additional hour of work) is in the following table:

A table with eleven rows and three columns. The column headers are Number of programmers, Robotron’s MPL in dollars, and Korrexia’s MPL in dollars. The values in the second row are 10, 100, 55. The values in the third row are 20, 75, 40. The values in the fourth row are 30, 60, 30. The values in the fifth row are 40, 55, 25. The values in the sixth row are 50, 40, 20. The values in the seventh row are 60, 30, 10. The values in the eighth row are 70, 25, 5. The values in the ninth row are 80, 20, 0. The values in the tenth row are 90, 10, 0. The values in the eleventh row are 100, 5, 0.
4sBeE/UpAv1gFFHGJzrJhb1zNs3otXjowYJGVa0ZHnaB8znfyiEVXCtCDJ9AJJiR9fauJ4h27MgTA0i0YsH9bzxCh9o5473NWxlzBgk2wHvRbQGk6zuX83kIQX8EJZ0MGWuakdEDoy9GfpaUrY/HthZ2nCE0OTtZQ45TVu6O8wl0ICrJ8OEwy4GQDt5HpLsXSoTg6Hw1hWe5w/Ti615v2UvzJp8NSCVqs4b5LPnMuOCGG59PjtzeDFn4yyTa2/K8YCwLzEcSt8LUnKR4Chk2TzU6w1nJgpliJ7PyHD0EWHh1oyy5LUym5d+VOjuhhEwZ0L1tQsDEw5eyHUFkdgRMb+lOApBZNnuf4uRbKV4SLc4zhSjCcx/gtan2yB86VsNV5xGwNS4Y+XG++APaqi3SRTdlWvz4882er+BHjZGM8V25dtmKbe1xTG/801Y3ZdWbYKlgu50MqZU4OswDDr0w8NIgn4OR+PMayiABDNUIsrB71V9Aj3sqiS3ert2rAgQ8gJzoXAAcGTLsG0X6mSpFZsBDprmWpZFD9CBrNQ9oit80vK0/fbMf10ON1L3TQqGiCOsaymrRvAAKGmX3tMmoxjr6CG5WkSGDoK/BRv4Jq0DGUQTWmD0hMnJuUF1L2WrgyFMf7gpqK57fLoXrcU4xrJW+3ft6HHW2kUgcNgVkxInyA5694rkdsW1ghNBbUSEu+SiRMfa/LVzkv+3/hAUXR5n5U0SeKZU0APMVn6rkHNisqKcpH0vFqZQDmhkDS8zUHP52Yrvlf0qWzsqEO6dD37u+TT4g7c+mAfsoqtBSUboCjXYqNT6rB6r4+1FL94yLQVy66cq7FdDDLOKm/K5o7QGCcwyXjn1939tNnaeF7+qHVWki6+AfCra3gwsInol18JGrKq/taqOyL/Fdc6qeR25ngoWaUzLzLtUcHoid5WzZOR7exZ0lCiBGpINxuLJFmIVkuQgTRwqUttY4diwH7Ah5YNQWC2RoFV/0k3teWxY1a6TNplTdy+Jp+VnH+BW9/3XW8uNVrZFoec5y1RIOjuwlURY/hNIkcXcLhH4z3c9QVI07sAlE6nRZRZFy/B7kz9SBRPreEkJH2lgFlFCwYtpuHoUjRv6+nNqBxQGFAgWb/I7qHQpJ2AZx42+UzybNQZI6RfDdITvFWylnY+ILhkuZK2XA4PfnCuu+Bm/3RfGxtpqsnJXMzcHoRgqwT3KkHGptXEXgUB4c1VYuXpuwrGU7n2n2zNqSHEArCKLgPZ0xwerxCs0hUDHMJQxZDODXLZn9dsFLhQ16KkLY2fOXPBnoFb6yG8Kqy3eODJ+j4GX3e4b/cSgq2uL0wmVm9Hrr7HcWSpz/mFMgfzq6mL2m/wZCnANCLYk2tPdjrYD8fnL8iVsIshMsXAsk5euXvhc4n1fqBgxgwUdmoBBwMDz9L37tz871nyLqjLRIEuuY+SKp2t0Sup8UUBpmI90aL1fYBZCGDf+vcNTRrThGqA/m4Hld8QTqNtjrOrwYNtKYYADxoT9zUuo/otgiazAYOt5CUlmixnnL0UnO4xUFYIsY46RdNXsSKRdFgNxcBT2kiurq/OxgEbZja+xQgiVGYQsU9lCZG3IC9WA55y9k7t4zRh+7g5rEk1BxhaRhQKltsFKriHAaCjUEU7jDSOZDJdN3wvxHUedw/TkFGWtr6CMeJ06HRmx2VKjBKUlGIUiVZGHxacaIA6OjKxsZQ4YTlXkMUmnHo7RTbVqtwxCOREQhMpTgz86Ns4NhjzQroz3AXc++RiKX7FYrBaQtpq0pVGK1VgZOwfEllIOfX948Wb3zsJR7IQz+8HYbVyA2Yo92V60rehnq+lP3LPaVEngb6lTLYBsoAUnV55OIwPgvCbgvwzHwkpitJb+i3OWl07bu0e0/3tJn3mfwxLqsO9hT7W4JbFhZySzi9ve+PuSTyX3W/Ip4MIzZ5AvQWhT4r+UqD2Tl7KZZJ1qNUYlY96OIDOYEnVFJLjAVlCNfk+PDZWrID/YkHsYgsR2yli3YPHfbFmQ1R8OcwTRRIFIQe9XTQOs8sB1O4vGCiPw/dqQNCHXqkFjQn8qLnAf3279ih1wLM8UjJ5bHaVx1k8ePyUBpT+6bwckTe/345hl1VpdbcJ2DSJHddrVNCzFyDYqVWyT6hKt2UUjATVJIqaUS+7FNGXV7w/HiIjjt1Ur6oREGed9quEktE1A/OXqv75QaAsUUBvreqffVjJinlTB5lEjUs4Y2ozNvW17/JxQIR656NBimPaFc94nGuxoBgo3SecndfNGS6hbOsw9i+b8r7kXGTXMwxLpEp1Mmy9Fns/I8cBYvb1o1KwmEX+fwn7G7au7yb9jQH+IliiAi2d6wD2blM6fmnpuOg31DcC4J/jeTMLqCNaJyh7SVuAW0CG4K5YY2yrChJWZpssK8WrF2YNpGaYiIYL7Qltqb4grX9fzDrdP+UYYMddtJKElZQR76UyVrJyLfSmxuBshBVPtyY5Z2V5il8rMb8Qm0xCce/yEN7MOpsEsmNag05J7xVvKGrtcPhohyW1JvTR6DSuEzMPuCXiudOnhjS/+pxUv17B2BBrecclVFIZovBa0tKkZu32JvBSJl4/2IVY7x4gReStQADgpmex9Ueka0LGjGaOkXxMQr9WFvsvwYzwhOs0l77QRsdywyAIKw1N8sZVUD9metVKU4rqTnSGsWY2WiGrdFfZlIJITC6mkNJuWiGKSF7fRwIFKJu91cUr1Pjz7bIr07wZ96coJ6vxgKwYDjGdzXcaZIg5/pN9z6Ir/Rr+gEfoPP1gnSopOFYhLKY4mI9Dq9xZ0As7WiM3n9K43RisWB/1D1zQSgr3iZ1IP2MAJZd3itpX0gGEI6Z5Nf/Wd0KkV1Gvglve+3so93X7DO+Jqzg40m2b4NGzHL221fJk0GqspZ0UB4FygENGU5dCbrjzvSVmMUftM37YgUyH1f8vLBAIqXaswGWlefbJK+syQuPUeEr3ngfHcCaPnWZumwN6Hlf6kTcsXm+AVyorTnECIo5v3L25i2b9+BN9YOsvuYNJy6NwI5HwiHcbcIkL8mrjkEaDsqZAl/tPc7HwzG+gg+4Gl093qZbQRl09IMIho8iuPRgFgfeMWHmW5oVXWONvixptV7MKGABC94OyX+x+uvDTAxGcuhKEqSM8pbi5NUD7zPNWEDRvDfXQMHJkXRqL5Uci1l83ejqWL+oYIS0ToBceghY06TMIVDAAKTv+8YlWZtTiQPu56qOjO+gYzIxb1vt8+WgEhIRI3aVwlVKw+ssgqfOEBFRjzoUR4SC7eFiz0SrdYp3s5SHZvleIOHmZaYxSqYdFjRmpfQpT5aW4MH9jVtW1cpEDSNI6sMNwZu4hhi0lycDmIGHV56Cv9n44ITI0H/uF1eUE8AGRBMt3LF53DXJp/309NG9UekYprLnv03G4lZCNoEvNCikLevcEyvAxBQXzvbv3I5PBRmltq/0WxQKK56N76/42W0ldruFwF3a67gc73xZaVqc7yh48jcO4Rl08hR03T/U1Y/N3c25uM69Hm8Vi5OIVvUKaF16XMwmhU4GPMHBf1wFBL5FO/IwjsYpPyKXlVc5T1DdUIZVThYjrkGVqhzjUoDzOJkydu9yHELKnJzfv3lC013qbG2Zw1xJ90tidQQiZ3U63pJA+ZbU8cjvdZY2o0Vo7oMZSSIob59o1abNyUU5KhPIbMKjaLjdCc4i+09gaBU+H0FovTtXLh4kZQIHekSn8A78Oj+cfOA3wAjYEpwROigPC1+rkTdS9sVvNkJIJjvb5x29+cyM7ZDJLlB+Jef4J4WDTiEXiG85NhCYukFG/QmUumpptlQsWRUascLxgW5k+KKSP0a3JvQhBZ2m74p9qL2gUeXLaVUJDjnjGRILy4zfxpLyCOyaPbKUdWnbrQg3sj2hyLgpa1qH6UKvhWOCKOKEYw797VCeVPk7tHkEMPJYA8HdTUlK7zKQRU+eRCS1VSytmGMs6w5efm+gpvDfmcZwyE/jRr3hBp4mpPCgyJl4/Tz3A+k64AsxB/BzJyW1DqtW5O/QTL/n1+l2UeE+Z85txaouYJxSgFV1C1aaofjtwhftpJmHXQ5IxyGRWzHONM+8IMx7jH7isG2TuQUbfi+VzTK1XEeBh42tgrfqKq+9OH4Nxd/SBPOmxPI8PjQ2OHUlWU45ffEvoR6jB59wABsREEJ7Cfsfk+Yw+fBD4PyRQPKiLk4zNccOZUKx3ncOyJ4yujbxQAfxKMwWsSFBS4srjQwYoFoYp3ZQtSjKmYG3lpwqZ5uqNjtxqplNApE/KMF9vJA5pWfXyROUO9hp6Bg33n3Txl/rWtInH3aOwzCLQQC7e35n6jp4h5iqE+4bCZbWQxKmuA3ScU30cJFdeTA+WGRpQ1Hm3U1aufyKTEyXq2PZ6uTPxTjp0daT1U8sa5u/LgYSEXTL1TesMaFRksf094kpArv60l6grJ/lm/Q2TU2VOhq1OIRVw3de7JTrpT+maZucdhbd/vxmo8G5E2U0XLZ2LLmP8ESBopjZOBLjIwUK81yU7WrsmtZdor4sO3Zn6YymMtV7dUpM1V3MmhKeh6IWd15gTCuAlVCNmmmsOJ2u5xmlS6DR4kA8aVIJm3A6NiO4EqTmvJFO/ayn4ns8+68LJkOyP7rLeIMXK0HH8ydLyRD+VzC81Olda/LtSlnlfXByH+xTge0ELJnZoAwKmW8alVA0dpdnyd/2q0XcGJ7pkpLKoixA9Ah86I8ndFBwezi7o75KUGTAbrd2vzfSGcPXQgs0nS4TePvSe/NK5tZ6EtGchVm2fwsntfrtJNqeT4rzYWXpS/612ra2ICK4DfmXuqqHc+n21ekpXOkY+PyZCyYjEvElAb9zpSPs64EXPLFFoGVvm7wNx3yBLQzYLlAUPaMFjEt+Mp4wgAuWnMERVZlAMEHmNqVsJOT2dqEHh26Vdu4DvsYmFStjPaawDoydBxurA6KeVfV7215Vc1qRLkvxQ+wLBG95Qqe3/qx0gjpq7J5rFhFRrqlrIk83HkDSshRxYijQWnuK511rtCN7z+8BBeyU+bfLkyrsGaP0RbOMkumZe/yVuUORZHS3JKmrzGwodQYCg0eaGvF7L8HMi0lCdzDhic6El+xdU7UxhgSHHe5dGrOeMMAUlPxZqMahduibGDBzidaL4HRMLtAtxA7JwvkibRBPcBARlZCNN6n5wXywylsiqkyhpgcOWKskgqoanYmWp4v9XGhqnyPYPjmfAmI8d0ZVagtjtdrGyzebaRFVJVCcyPTiSO2BTub28nv2VuXFgpmDkkDfkxzyW+LvxLOaPuqxWqRSlPUt2lOhqoVD/eOCjbsFg7g9f3wBkT+K/5ZYGIYfQ9/0hslASlvf9RAnjZY/PaQhL7Pvyge1I+UTZwM/oKCtkthVYWkfDwo2wpJS7LZrYjvJmTlShiYhizCsA+kNBStrcaLJUVwhkgviF9XDaj6a7pG6bmbTDtktpcJeiOwsyaJa+bJKehVjztfUpQ8rDXxRtNIVLj2caexLFu8imG6efnTaVBT4D3WYuUoFtchSeOgi2btmre9frrPHU3X6gPT3+60vTFMXnSUQi6a7f4brDvDKf6C7Rw0OW5w52B1e3+RvZMkAJeagR9KytH1eteIeJaR5sFeJ8DWGC4/0DPi0SoDvgJaCFzDLmz1oF7UGc+jLrObnxLL2DNvQRS+JduruGzz+8befzL/5JIkdMR/MZntvjXxKadRrREtYl7anDVLhKgQtr1Xz75CTHOPtPSy1UY7d22M6BMC3P/kHIC4QXOQA9Ly0oNA7VMhiLo0LkDJVWJQZKTs6Fd0TILKRYJkvqyOgqUT46mdSnR5AO6oWkaidrOHn+PMa+DGDR+JPV2ecMJWbVw37uaXLQOCa1v/wtaxdHTgDC0Ic989bmqsB/A8V5M6tzf7x8FnrkL1aepc2cHHFyZRPv2blF858LbP5Lx1rWmukgSIf4CI+Ot6ZcB7ZMepOrFUZ4vnU+8PVqQ2fWXhaSlOZuerqRaYNR4qEoIEJyk2CDA2l8AeFIA8N6ybKXfn+ZJb2qxFd38ibrMfdnTs1tr4RaWKxpkeXL0RJh2HObirGC2drzjURK/6+K3UtdK2r9TMPRxfr4M3oOg011S82CBV+lerwTCRuUJkmnFgSROQWbry9mCcoJtOJMEtlglojmZQjQutqpow36cQfCPC28Ny8wYPiJWitmTPUDigjo9OF9r9wKaAFPM9tO3QeGxjGMJ8svsecCQhMYLG0IwMzhfBU1Y5poX48LudBFWcQMx47Ivb7KcLUCIpKvuZr/z3P2C6+tgIGPSgH0XD/rHpaI3Z4uutmOBj2qDpa1v/upiHi8tMvYxZxYmoaIC2hqCsrqhnPuk9PvoUN43EYlnm3jnvw/beBYdnI2NGJD8npTXVWm0nMUoELIgRdDzMODS8BKtw71bgODJ1csnhDYkPcikbHAdwBFfn1HifwTVwvVB0Dz7y2K6E8WLgQPHph2yP6Spb067k7xztNwv8OsIFmINY2tNaKwu/g3RuzuekMaJ2fGRpEvgIn2sVD4xtu7ZTwrW34NNQDJjP4CAVKiUxEJUNOHPC2+Q/XAD+qcrpB1k0kdsJ1Uje0e94G+ybjljC8levtYSFNSanCgOW8UOhEeiEKQayIGNdMbIDZVWvL0RgfE0GfGRSPn4/ZXC6Hh14YmRl6lxA3RN9uzb9oS5QG4BTiFno3RaEQ9OtW/OLCGYa9DvEKxFviTA2BXtGrGaTQbs+SCHoTBZBNL1tZ/W6ttXgJFcYL2WzUUGqBjcMK7UreldQNmFB94T7AmiJeUir05OAcHFHgA/qQMhZJmjIaf2lHWsGnvf1+1lcny41m4bE6Y1QcIhpzw4eUvi2ukxkVUJh/coMBSs88aerr9/bCwaVj1+k134e13Y5CH67+t7p/iyRfqEFwmY0mntHvwiJQcaKPp/U0XMqkaelljRKwI5TJVkqN+4Y6kIgojpk9Yjb3LirqN0q5k7S8HcmMTrNVXb27eRvsc/oUsPlRAVS1Lzfegz0B5Zvzn5O8GTS8tvfswXVzxbv56Fgth7gVc6CmL+SNdwPSUf6UOjlTiBB98S0qwCoGK1+Nh27UZx0gPV7KQ68s+/ab91XadrWTGnE2RQzcl+S25LHgRZwD/iw8GXYBHUxX+KDFLsJDB2T83u47AE7lypEgq941JDrCH2DU4p3ZJeVs3QoHJWMu8Vroh6K7wS0pkq7StXBeLUgzWSntDETc7VtoUAD01QPP1iKtYmyyQaE7nHdyHDbxARAmC3PijdIJ9lqp0EkqiyzVXihVJXTTI/N5rHPtrGbDeZ5cizG5i3f0I9aTj7r/z6TZ/0qfx6rZM+kuSUNjq/CHQ9XQLQTcdfUNm+e1Zh4zIsEG1Q2tradBWNsgAABHjSr2jTi/30m4TBXgyzKBHrvK8e4caMPkCWM0LEfvbBKiz6UfdLffNQtKIAU2yabOWJRAU+aWlgC4kcqxvUs0KEBRSPD3TFc8rsHE4h7Ks+sSE76b18+8v0rQjBUAd62vhoUPCyr9B+PFVGjS8ApSuUH9QnCJU8Rqnq4A0oi/3Ym4hJ6gCgZ+fY4gPc64faqrmD/Oo7UBS8OmA/mhufhYtfUm/BnRxOZyYjEzfP4fKypIuvgEwRqGRO64VRHhtfObim8KShhTI780hk42QgToAiVgaU7IMM05IfiStEM90CYNqREGIiKUj9n8/RpKYJflKJxvjqWAGmv8A/gK+FMfzgTBSshHmHl4MpTt64a51CppKuDIwK8JP0ERS3XhoRM0eh/u/3rlFAREZ2bdVcFMYH4jo21K2qBDfDwXTCx7o5dJxYPCbw0Vc963cu00EFp7rjZhQC8ubg/RkmeC2Np4wZzui2Y8eF1wz5qyOcv8mbT63ax5zTvqNAJM02gvkD/g4bUT0vbScC2phgCJA0Ntcek2KOsaC3TaGgH4QQb9jroDSxJk828pQKPGHwPtoTY8q7AoTLyn5yG/AUIhraZ0GI/VfWxLih65mMmWzcrvpuUHwpYMUunCULWyXfPHnqAGbfSAWunKYv1LetdF9FriElsgjIzSUKrhB8250B+cBzCSRcEY+hlyc482LLJ8grvxnTRWADWlKKzKf9OGk+yWsg4gUZxOrszlDE2HrCtK7kIS8MOXvHMF24bl/PpksY3NL4mKI8XXMTJWe9gqIWR9E9PJvxWbFNM+pKofInomESujtZt27OZ3F8DSkAdGKUSCLvoXSzWDaXJRQmuEm/PLlJRX50LQw9JBeTc9FJeiAcrZ4sclN+T1a4j8O5ZIi1jXXmAYitRo5v6blkZ/mQJogKlokw6iqh81xwI/3VQ9TrHENAcmp3QWUSC4vVB3jMDKE4/Wu3IvV1LMpX0vZvYUUoBxr/EvJzE+XsCZABCPziJESPgdAfBH707RTG7KVwSc/OC2Qo/G4slof2dLHxAbjdbT6unRjfX4bmQZf/oUje4A9mnmBPF2R1F8OXZQv/8hwFvCc80Lli9+aPg2v8q1gpm1uN3o+wtuESazFrHkS3twTCW6/6DLxP6wPLHAa2RHcqmbTBT
2:13

Step 2

Question

MHrRKTES/QCzofyjDPOkoqMa/okzsrjdTN67CbkA+iRoahzNvtXyHcHksTUlFErcCyTdeVg6l28gyND79g8pJS/V0mlfGrlV8L7/b0TqEi8qTYdXBodwH8mXkX1a+V8/eClKltkyhp+sbOXV5K1XiZxTcOndcP7MVWLLuv96chchrnGS8WuQ47k4m+nmQSmtDkq7ymAWBEJ0zHACEdmJP74wd7vHS/mMcXUz17p0zwzqC3i+bkvtuHl7rS+xo0/Z8QYrcuVfTJj/Mt1HLIFn0A/p2wZ1RlotrynRfyB1zccs3pswvQ5DA9+6Dk5Vgw1/SbwHtrnainAu9s13BckKQVINv67VCzHoLwK5lj7dUXfB48fflOWtIkDD8naaisa+vBu+G67/RmlsBCepc7oYD7wM8Isx1tNm0N+NGAqkK9Tjo//DE5QDoY+eUinJUskYnA3sgybtnqiWHUdFNKA8lIU8q+iLbRZK7d0eW3p9qAWpa8T+CEHX4tKpftaEb+jmwcSuCHwt4ETGZsQUc8VBQvs/1EdW4Bu+NjNGNWFN65kZYBIyiH9CXn8JDrYUWVFEavbioRq2BmztB/LsLQNWFsq5WIZxLkeuOKkuDJlI9g6TB/a/Mjz9G+Ahe+B6U0bJVSifsStMksTFjD85DAY4LbdEswpwVCg/forNyjlFkEZmPrgXwWllwZa9Ke8PPlYpsuzxoT2EA9+yoqNMdWGWBPmeWBaEso7B8aT4jziBw3VqgUFFFYSotX7ryhK8YZWitBxlr9VfU7BlBeefgO4mOEWu9VRD6/KqCGcECfllHa6tBYsyBtFiCkvrq7/SZp94WJ0lCL5jZ9cCWiGejq6tzIqdFyjZeZloN1Pb2Dn2xURZYplAtoeuQ8LzAe6TqZk3/8xEdba71Vdqtppx+/WW7qaOVIhHf1w3MG6zlk5gpDJEaXJ3KNlWuuZDCcKKSQyXiOGzdWPUKYAw9LXbU6c0EUlqhhxAVaYO0ZxzXDjFSK4w/6KVuvJ/UJ/HqZp5o5+0K5ofXefdsP3GFcUri+X57R44yb1tCNy1wZKp8hivj0sTqn6QeY73ULUbrdLJypCvindpUitLfVJEfclBfKjVI/CeXaZ1OP8vPYe0P7ENOIkmBZOD4tSdgb5cRKmgmS4gM2sRv7talTNuf652t28Dkv8IevFS2Jgk8AOYXBecEfSuxAL43nXBgzchXCdzxEksegLedAMxV6i3oxCRfRfxu2peR48AJYNXjru08MlQ1EZyAXKe8A9YYc9PnzzX4e1BsekQb74PJ2Plk4nAxSy2s8loVBIAYq5HGBrm2Bglo/n330FHfbuI/3YwYhbW0THkdARfFBpyLNiP9RA0dRsS3oMMZCVPOMwq9/HYO/0Tl1OXbgHbpxiJ/lH+0nE3lo/6sTjpTnqZ0yNcu0Gw0nMqMvl2LJ4niutox9uJfyFeXfcV+E6vosLChj/Hp9Txc9Pl7FkCHk+6KOcL48y/oNajeykVS48J/nLf1otqS+vD7JgZGXd+u5Hi5CVNUKpN4wMyVDSX0C343lY5JNj+RuOkMcxhYX1M3JbHu6fL1+pjTTy2xXZgwi8f0kfUlN9FkRszl38VLuqSdXyC4P1yibLL5Keg2FOZAnagXf4JgPeYe5vw84HCPJnrRMhvVDCBoG7fhjikeee7YRSySVuFDGIAbK1q32fX7Vx2lMxtX3AfFfsvF2hLgdi7WgtiP2AKSsLBjFiCUefOiV+eynzngPHeCp8o0RLYixw5MG79eDBGmkyL99SE/4Gd36SdJZH1UyPp49GtFgjhcKvGUKKi0g1zjImkRKJ4RF8gnqk2RQjP1Ebd0/U2psUeQ38K5e+wXbctTOK79veyYr5OtnawyA31rMGZaRaosQ2Z4t3/grGVHU7h/5RaMi+YBZWZmYGBhZOB1QVxi1MBb5JCFQBszGv1fJA6YG+renlrIRWwmf/gum2trnKE+S/gCANFbmprgDo50mb/8w2pJpjRJsucrM/3FvxG2Z+/GX6KRGaFSDgGW1tLsoXBTyaeY69dQKF99oeNfkKtdBs0tJr6XgOiQMHDpvi0d4imSONTNaLXkLwSVf88Pj4/Sbdy7thXHiGMQgAoHXSAUAe4cAd2I2UIWQr7O1PVyrh+yXIVo+bnkpwjjG+QUGcthUtSnWtWa+TfsHpw10w0sgx4bJn20tBUmAQ5oJ5/dHB0U4mJDd1u0tA9xzBRzMZq14Xlx8csAeyWnBuez3//w+ovPZzTQIpggTvhxeVw6IQseJEuk8PUxV+P4MYILUUIf/Jyxw8/pkbloXBWZ0E6zv+NY4PIkabRN2Yk22LQ8/JzP6ZVc1uhb6AoJ0rbvfUj+hIqgTRPgVRFUPw43/cU7Oe4Rd+4DAAWU25z3T13VGHnM4DcaReROvgNjp7Z+58WMaF2llHutjgWfn2vpxX3P7BmJMRckgzxZWcx/7emUsYWpvI2/h/4GgGlBdbfrPgx24FoGPRZP2gfpYJ6MfirvuKjGxQu9raGVAcbVYWyQ+4byRioy3/USsMgYww0zOd2D/dRDvyqaHfGX/byTaEQ0VgxaX8FmLtNrRTVpizv2IyTFc8bcQ288ERBhv2x5F8ja4GMhymnIFacFSDDk14viDCpD7lirdZYuKZGAXsjIQtZygVwsyZykROf3zsTH/6N2idb3ciH0tbbRFqPw9OBbm+IGXXPWo2QfYfxMKGbtQpJDlQsZFv1+OJ+aJEoE1n2vepibRFTkx0VP0LxqDffHhZhCLFYoRfMCzz5UdyLqCWI8jRgJNLCr4vqBeJx74ywipRw7bH0Vu0wOWE3nlP5GNBhAZIqBX8AE1PMnGta0FjUbrcYO+I8otks30XYYxvUwQUfk6En0vOmcAVfrxkvVz9hA6aobbTel0DHp5nkIoeOjC1L0308bl6ghHW+Uhgax3Biaye7ZO4XUynz4AVtNx7ZLdJpuZ8CEFukklusDcgOzj4o26yRI4+TFFC7FTlm2yHIvuqE2XSpqzvHCnA8g5dCRm/YjTfNkQGeCDrK62pGSllo6NHaeohioKGOslpHylNnOjt05Z6AhpW5+LEY1NnbxvUFX/KX4reU+QvgAcBmFHsJw6qGVZgiqp7MWHN//jL2VQUqOksNSMT823p2EikAq+8TMdDci99ZWd+26i5PC0WLNmHkj7CfC/zyhvzHNeiHKowzMfypDHCqLax2d8Z9yjkaFDl04RKm28xqDv4uVFD9Zr7sXWezF19CCvJEvtKHA4nqyx/NjYhn3A9JiXYKOOHb5FMcO20wF7vONZKlQWMC18qxs5FNf5uYhgiL+IJkHU5RR2STdTSMBBziSJOwg6Di0UMNDX+hlX80tzaQpz3gXFlGM8brIw0hFcWdFXMWyRVzhSUv7I8eEepNicsJDbOGDcA0fZtDSdIA1CAx8bR73sGXtXQ0u3Nrk8KJ4gpFDNd0UpXYMIXYP/bPejdWtYnAxn0D4FPcwk7odZbF7RbdPur4pNzOcYoApO/ay4UGRC6ugKpwzq3IOMNU/cRzgNXIDS1XncwhagmO8SMv6BSD7NomUW/1KE6L2L1k2kMn8A4oMX68LurrndqWxRl7IJKz8wOryHt39bbCmgeCGTdyvlOKhX2xz5hBtGFTZFBr940LZ1Play/SLRF6Jgg10UuBJXX/xQCRvuVtTFyZAVx/NtMW20SJXso8kUJ83owj7gP9NXWu8zvxlEEkwSrTTbxFJWur9HPu+80sAA6ASINOfayXjTWvSSBhSj8XTW3WeCyTrU89cgO0u4mNZwAyEI1p2nxFCiNmwSyKG1gk2EIZV1IouNuIQRS9QCsHP+Qe2Pyqy85tZn8/jhZCr73HR6Ke0MmNFrkTFVnC6bDXtZVG
1:14

Step 3

Question

nonPEgVZoLk+2+UHdeFM95wcDCW6KXdJ8lpe1GipxEGY/UaLG28zzq1ADEVigU8OFEhjlYQJwzOCDkcDkbdYzUbWsB+ituNyTKFcXWaGS5Ro/nPq2jTWdIydUonl85HHntner6P8D1Q0GioiMiVD5yPQ+Lp7oZiWlfVLknHtEDdFiN1+mzutsqZYG0TvJZEDM8JdLt20/BKa5dPOyRgLiApHbnoVaYViOg7eUZEfvF43PAzRnpOtvwSmy0vrkszKUXztr1RDWga+rh4DNwPPHnjG+9P/0EoUPN//gsbfebNd+PPaK/vo+A7BWev3A+edxUQfPbvv3YD0N03wJgaZTfPJp+ZvDFVmtB7WNeB4X5n2mudowWLc1wFmA6blEnLp7fD799HWjqMsv1R7vU5VIOzq2uxsEUSUQFidcZi5b3meXt4y6+bFl+hG0Z0Y5RUnspcU8sEAZ3ea1ICRmMtglRagT4AjJV4A5J4lR7cVWOQa19Aix2NjoCUOZFBNlEyNUizl992RM3+x0heMb5l6d/H2QnEoKY9keZX+n7t9VhYYzejy0TjvKO51LcrNaNKDU7a6apc8jXv1Md9mG4Q9+EjYg4OoLS/4JLQd0IYXpoVfJN3qQhj9647Bi+M7cWL573juASTNyvAf/V89lOFpy8iDF45rHSd4BD96HaI1CdplqM+tdNU9Z8rMObzNcZOyeLzguJGjsC7y8dlJRB0GxVGxZMPptAB61QGpAXoEfTukXikpQ8QosMlNsUZaFsts2KPduQ+Lwqxebcv5XnUZnuy96GVGCFP7Qsp87S4psYfMQ71Qf5FJwWn0iSnudarzBwxRlQLVNyureR77jYRjhqDnsNsDfH4wAbmX/lToaop48t1yG27jvc7uZ9NqfDZn3vws8igpIQ5D67hLQAGpCXZs7SOe+aAsn7z0/TafPaW7+ulVFlmDskNM2iSrKwm4zxcVK/FXuXQlOyxwbkJ/Dw5rz/2cOeTliCF/AUSXqDXgDQGpDmeV3vxZNvWgmMJfhmxlc7+kErWaKsIsXEeBB0+5+NIRfpBbqasNCsxaGPzFDaWtxWTgSNWgxw0kiDbUo9D49jkzjm6i6fsoDSs11j93aiv6SPYyQYVg18pXdDXEXt/ttrtI3XH+QsV+zil1YpFPtjCh7bAzN+P/UJ2IS9K/pZ8sgcOt3ifIYPCMU9xr/0ie8todOWg46R+IEBAfo7qXxJaKIWU38b3QOD/9iSSu0KIwhUQeP78H03/AnbGSfYWlCrFEdf/c2HHJE1qnu5zqIo9yJEfdo5WtgaHBNjKlJnuyIugjOoRxwYoOoIb2/Aq3Qm5/rolH1/Q9/hmShKBsr2VUH3zmoo19cMvRzFLB3FoFxXZ8DGN1GDkN8Nu7yTmyYBAeBNEPF2rBzqVnJ+TEWKi2kfccqD2/bG+5LSXGJbOwbMq3qdMRwhzCrEQiAqecgk8NIB61B4GnALo0TMdElbioI0zUW4o/1e/DQtw7LrKk+TExFWAlL7KLzFYgn88fD80uz9aWuN0PlBsJ6eupi5QqUFmW1oajSKbAYesQ8ywK/IiJ1r5NitpujhNzxENOAxYY+1g5iULguxAnJB+a5ZXU8rGVwHcWyDIlnrHzh85JExs4v6nfPG+zxUxyShEKMzdaKCS6jKoC0cQRS8/8LSdJO4AC0gJvmXyIzDgr96MGBKqYrG6H2Mk+dbvvaOxJZavrVSYMN+SEJlmOZsIjYoVcw1GFY7xH1JVI1gM+FIT/vKnU6qrjxnwa6a20tCmamC/uMky4Y6n28ELX+/PoeEyW685aZr//u3IZX7nFnaI9nOxVvD7+mT8+YXKDcmYoxd3I35nz/pLuxJrLsG8jih19FhnFZPdjDySXYMkZ/IVoX9dyXYITt3gqcKF+v9M6zTxgePoC0qrRYwPF05L0tPKJengSvykvddCC7G0mmwA6TTYKrDhrq5JkYkNz3E+7McUOMr3vR+ouA/T7D214GUv+4UxzS/LIsi3CeKWFy+ub++vtlQxkv2EgRJRCpMHYbgD+X0E8UNr1OYlkWJPu1NfiikJrgwnXECgn4Raw40Fh/JXcJOrtI/3XsXHRvJ1d/ujnakPwVkpAtElzkCv+d66BU4kG5iaVA+UIlOlMreW3En5dPDNe3OthhSPE3aESzbzg2FemDlkNsfLluZpBF0Gvx8rmjxFEQjkCHRPmlUPLikMX7xP5oXBiQ0NoZQTd3sJCqH7uh69iHzFxpnLDK2/3PxFeIgFOzaNCgT1hUVdSIFbqj1Po/3x+8ZM6uoED+LaRE0yOBtwoYxOTc4F/ranO0HGNwz0JbWeMQG8R/+qWoSHa3fxWZc0iLlDE02phe9iVqGCWSABglkvrV+ujILZ3hcYcRviyUxiwujPojfmWPBNv45apbaOvaQeYNCleivuv/BcHb4Iw7nGsBuYH2tuv8tkVcHYDhL6aV9OoZJx1AZ6tEAW406MsPPfb7BxWY2jROmwAiJCuHJg7bTCjcxR8mfJFpvAr0OwkdUyxh9gF04MmiCxGG4qJ3Yc4oZrYJHTSHgfFfAOG77J+BAPiQkjdmhghjaI6mt3VnYGTPNrsARDcw1eYTNS9lLWCUNCdTAuqV1UqnkLmPQmdAu1BbYHnbqpFUey3Q0yuh1dYCxZMiSYFwCAYF8z9OT8AF5IgG6gqGNRP5m+oTPnD3GAa9xn9nSNdOm8vfOCeWDKvCqJZcX1dhio+i2qp1k8yldlGp06e0UPqg3/k6izpIIv883qs63yQIYLJlC6mE7ckshJLnBYHRgkOzHhAKGKNFdMTHhdDucpcNZy4mcQgRxx9cPK3YN1OXUiQoT9zzBZUCSw9xlFsXUPkbhSbxZksT+ai2/MysKQRYGZGPmhZhkjD8c56hh9FPx4JDShP8maA0hqR1UEJwBSuKmLJwPkIGI/w

Step 4

Question

Suppose 50 more programmers come to town.The wage will now be $Pz2PEfhsNWI= and 8P3aa4uLOo8= workers will work at Robotron while 05dveybDphA= workers will work at Korrexia. (Please make sure to entire only whole numbers.)

Correct! This can be seen from the table and the graph. 50 additional workers will shift the supply curve to the right, leading to a new wage of $10. At this wage rate, Robotron can afford to hire 90 programmers (W = MPL) and Korrexia can afford to hire 60 programmers (W = MPL).

The plot shows the labor (number of programmers) versus the wage rate. The horizontal axis is from 0 to 150 units, the vertical axis is from 0 to 120 units. A blue curve is a smoothly decreasing curve passing through the following points: 10 and 100, 50 and 55, 100 and 30, 130 and 20, 150 and 10. A green line is a vertical line at the value of 100. A yellow line is a vertical line at the value of 150.
Sorry! Consider the benefits and costs of hiring one more worker. To review how firms determine how many workers to hire, please see the section “The Demand for Labor and the Marginal Product of Labor.”