Question
One way to think about wages for different jobs is to see them as another application of the law of one price. We came across this law when we discussed speculation, and it came up again when we discussed international trade. The basic idea is that the supply of workers will keep adjusting until jobs that need the same kinds of workers earn the same wage. If similar workers earned different wages, then the workers in the low-paid jobs would reduce their labor supply, and the workers in the high-paid jobs would face more competition from those low-paid workers. Let’s look at 100 computer programmers who are trying to decide whether to workfor one of two companies: Robotron or Korrexia. To keep things simple, assume that both companies are equally fun to work for, so you don’t need to worry about compensating differentials here. The marginal product of labor (per additional hour of work) is in the following table:
4sBeE/UpAv1gFFHGJzrJhb1zNs3otXjowYJGVa0ZHnaB8znfyiEVXCtCDJ9AJJiR9fauJ4h27MgTA0i0YsH9bzxCh9o5473NWxlzBgk2wHvRbQGk6zuX83kIQX8EJZ0MGWuakdEDoy9GfpaUrY/HthZ2nCE0OTtZQ45TVu6O8wl0ICrJ8OEwy4GQDt5HpLsXSoTg6Hw1hWe5w/Ti615v2UvzJp8NSCVqs4b5LPnMuOCGG59PjtzeDFn4yyTa2/K8YCwLzEcSt8LUnKR4Chk2TzU6w1nJgpliJ7PyHD0EWHh1oyy5LUym5d+VOjuhhEwZ0L1tQsDEw5eyHUFkdgRMb+lOApBZNnuf4uRbKV4SLc4zhSjCcx/gtan2yB86VsNV5xGwNS4Y+XG++APaqi3SRTdlWvz4882er+BHjZGM8V25dtmKbe1xTG/801Y3ZdWbYKlgu50MqZU4OswDDr0w8NIgn4OR+PMayiABDNUIsrB71V9Aj3sqiS3ert2rAgQ8gJzoXAAcGTLsG0X6mSpFZsBDprmWpZFD9CBrNQ9oit80vK0/fbMf10ON1L3TQqGiCOsaymrRvAAKGmX3tMmoxjr6CG5WkSGDoK/BRv4Jq0DGUQTWmD0hMnJuUF1L2WrgyFMf7gpqK57fLoXrcU4xrJW+3ft6HHW2kUgcNgVkxInyA5694rkdsW1ghNBbUSEu+SiRMfa/LVzkv+3/hAUXR5n5U0SeKZU0APMVn6rkHNisqKcpH0vFqZQDmhkDS8zUHP52Yrvlf0qWzsqEO6dD37u+TT4g7c+mAfsoqtBSUboCjXYqNT6rB6r4+1FL94yLQVy66cq7FdDDLOKm/K5o7QGCcwyXjn1939tNnaeF7+qHVWki6+AfCra3gwsInol18JGrKq/taqOyL/Fdc6qeR25ngoWaUzLzLtUcHoid5WzZOR7exZ0lCiBGpINxuLJFmIVkuQgTRwqUttY4diwH7Ah5YNQWC2RoFV/0k3teWxY1a6TNplTdy+Jp+VnH+BW9/3XW8uNVrZFoec5y1RIOjuwlURY/hNIkcXcLhH4z3c9QVI07sAlE6nRZRZFy/B7kz9SBRPreEkJH2lgFlFCwYtpuHoUjRv6+nNqBxQGFAgWb/I7qHQpJ2AZx42+UzybNQZI6RfDdITvFWylnY+ILhkuZK2XA4PfnCuu+Bm/3RfGxtpqsnJXMzcHoRgqwT3KkHGptXEXgUB4c1VYuXpuwrGU7n2n2zNqSHEArCKLgPZ0xwerxCs0hUDHMJQxZDODXLZn9dsFLhQ16KkLY2fOXPBnoFb6yG8Kqy3eODJ+j4GX3e4b/cSgq2uL0wmVm9Hrr7HcWSpz/mFMgfzq6mL2m/wZCnANCLYk2tPdjrYD8fnL8iVsIshMsXAsk5euXvhc4n1fqBgxgwUdmoBBwMDz9L37tz871nyLqjLRIEuuY+SKp2t0Sup8UUBpmI90aL1fYBZCGDf+vcNTRrThGqA/m4Hld8QTqNtjrOrwYNtKYYADxoT9zUuo/otgiazAYOt5CUlmixnnL0UnO4xUFYIsY46RdNXsSKRdFgNxcBT2kiurq/OxgEbZja+xQgiVGYQsU9lCZG3IC9WA55y9k7t4zRh+7g5rEk1BxhaRhQKltsFKriHAaCjUEU7jDSOZDJdN3wvxHUedw/TkFGWtr6CMeJ06HRmx2VKjBKUlGIUiVZGHxacaIA6OjKxsZQ4YTlXkMUmnHo7RTbVqtwxCOREQhMpTgz86Ns4NhjzQroz3AXc++RiKX7FYrBaQtpq0pVGK1VgZOwfEllIOfX948Wb3zsJR7IQz+8HYbVyA2Yo92V60rehnq+lP3LPaVEngb6lTLYBsoAUnV55OIwPgvCbgvwzHwkpitJb+i3OWl07bu0e0/3tJn3mfwxLqsO9hT7W4JbFhZySzi9ve+PuSTyX3W/Ip4MIzZ5AvQWhT4r+UqD2Tl7KZZJ1qNUYlY96OIDOYEnVFJLjAVlCNfk+PDZWrID/YkHsYgsR2yli3YPHfbFmQ1R8OcwTRRIFIQe9XTQOs8sB1O4vGCiPw/dqQNCHXqkFjQn8qLnAf3279ih1wLM8UjJ5bHaVx1k8ePyUBpT+6bwckTe/345hl1VpdbcJ2DSJHddrVNCzFyDYqVWyT6hKt2UUjATVJIqaUS+7FNGXV7w/HiIjjt1Ur6oREGed9quEktE1A/OXqv75QaAsUUBvreqffVjJinlTB5lEjUs4Y2ozNvW17/JxQIR656NBimPaFc94nGuxoBgo3SecndfNGS6hbOsw9i+b8r7kXGTXMwxLpEp1Mmy9Fns/I8cBYvb1o1KwmEX+fwn7G7au7yb9jQH+IliiAi2d6wD2blM6fmnpuOg31DcC4J/jeTMLqCNaJyh7SVuAW0CG4K5YY2yrChJWZpssK8WrF2YNpGaYiIYL7Qltqb4grX9fzDrdP+UYYMddtJKElZQR76UyVrJyLfSmxuBshBVPtyY5Z2V5il8rMb8Qm0xCce/yEN7MOpsEsmNag05J7xVvKGrtcPhohyW1JvTR6DSuEzMPuCXiudOnhjS/+pxUv17B2BBrecclVFIZovBa0tKkZu32JvBSJl4/2IVY7x4gReStQADgpmex9Ueka0LGjGaOkXxMQr9WFvsvwYzwhOs0l77QRsdywyAIKw1N8sZVUD9metVKU4rqTnSGsWY2WiGrdFfZlIJITC6mkNJuWiGKSF7fRwIFKJu91cUr1Pjz7bIr07wZ96coJ6vxgKwYDjGdzXcaZIg5/pN9z6Ir/Rr+gEfoPP1gnSopOFYhLKY4mI9Dq9xZ0As7WiM3n9K43RisWB/1D1zQSgr3iZ1IP2MAJZd3itpX0gGEI6Z5Nf/Wd0KkV1Gvglve+3so93X7DO+Jqzg40m2b4NGzHL221fJk0GqspZ0UB4FygENGU5dCbrjzvSVmMUftM37YgUyH1f8vLBAIqXaswGWlefbJK+syQuPUeEr3ngfHcCaPnWZumwN6Hlf6kTcsXm+AVyorTnECIo5v3L25i2b9+BN9YOsvuYNJy6NwI5HwiHcbcIkL8mrjkEaDsqZAl/tPc7HwzG+gg+4Gl093qZbQRl09IMIho8iuPRgFgfeMWHmW5oVXWONvixptV7MKGABC94OyX+x+uvDTAxGcuhKEqSM8pbi5NUD7zPNWEDRvDfXQMHJkXRqL5Uci1l83ejqWL+oYIS0ToBceghY06TMIVDAAKTv+8YlWZtTiQPu56qOjO+gYzIxb1vt8+WgEhIRI3aVwlVKw+ssgqfOEBFRjzoUR4SC7eFiz0SrdYp3s5SHZvleIOHmZaYxSqYdFjRmpfQpT5aW4MH9jVtW1cpEDSNI6sMNwZu4hhi0lycDmIGHV56Cv9n44ITI0H/uF1eUE8AGRBMt3LF53DXJp/309NG9UekYprLnv03G4lZCNoEvNCikLevcEyvAxBQXzvbv3I5PBRmltq/0WxQKK56N76/42W0ldruFwF3a67gc73xZaVqc7yh48jcO4Rl08hR03T/U1Y/N3c25uM69Hm8Vi5OIVvUKaF16XMwmhU4GPMHBf1wFBL5FO/IwjsYpPyKXlVc5T1DdUIZVThYjrkGVqhzjUoDzOJkydu9yHELKnJzfv3lC013qbG2Zw1xJ90tidQQiZ3U63pJA+ZbU8cjvdZY2o0Vo7oMZSSIob59o1abNyUU5KhPIbMKjaLjdCc4i+09gaBU+H0FovTtXLh4kZQIHekSn8A78Oj+cfOA3wAjYEpwROigPC1+rkTdS9sVvNkJIJjvb5x29+cyM7ZDJLlB+Jef4J4WDTiEXiG85NhCYukFG/QmUumpptlQsWRUascLxgW5k+KKSP0a3JvQhBZ2m74p9qL2gUeXLaVUJDjnjGRILy4zfxpLyCOyaPbKUdWnbrQg3sj2hyLgpa1qH6UKvhWOCKOKEYw797VCeVPk7tHkEMPJYA8HdTUlK7zKQRU+eRCS1VSytmGMs6w5efm+gpvDfmcZwyE/jRr3hBp4mpPCgyJl4/Tz3A+k64AsxB/BzJyW1DqtW5O/QTL/n1+l2UeE+Z85txaouYJxSgFV1C1aaofjtwhftpJmHXQ5IxyGRWzHONM+8IMx7jH7isG2TuQUbfi+VzTK1XEeBh42tgrfqKq+9OH4Nxd/SBPOmxPI8PjQ2OHUlWU45ffEvoR6jB59wABsREEJ7Cfsfk+Yw+fBD4PyRQPKiLk4zNccOZUKx3ncOyJ4yujbxQAfxKMwWsSFBS4srjQwYoFoYp3ZQtSjKmYG3lpwqZ5uqNjtxqplNApE/KMF9vJA5pWfXyROUO9hp6Bg33n3Txl/rWtInH3aOwzCLQQC7e35n6jp4h5iqE+4bCZbWQxKmuA3ScU30cJFdeTA+WGRpQ1Hm3U1aufyKTEyXq2PZ6uTPxTjp0daT1U8sa5u/LgYSEXTL1TesMaFRksf094kpArv60l6grJ/lm/Q2TU2VOhq1OIRVw3de7JTrpT+maZucdhbd/vxmo8G5E2U0XLZ2LLmP8ESBopjZOBLjIwUK81yU7WrsmtZdor4sO3Zn6YymMtV7dUpM1V3MmhKeh6IWd15gTCuAlVCNmmmsOJ2u5xmlS6DR4kA8aVIJm3A6NiO4EqTmvJFO/ayn4ns8+68LJkOyP7rLeIMXK0HH8ydLyRD+VzC81Olda/LtSlnlfXByH+xTge0ELJnZoAwKmW8alVA0dpdnyd/2q0XcGJ7pkpLKoixA9Ah86I8ndFBwezi7o75KUGTAbrd2vzfSGcPXQgs0nS4TePvSe/NK5tZ6EtGchVm2fwsntfrtJNqeT4rzYWXpS/612ra2ICK4DfmXuqqHc+n21ekpXOkY+PyZCyYjEvElAb9zpSPs64EXPLFFoGVvm7wNx3yBLQzYLlAUPaMFjEt+Mp4wgAuWnMERVZlAMEHmNqVsJOT2dqEHh26Vdu4DvsYmFStjPaawDoydBxurA6KeVfV7215Vc1qRLkvxQ+wLBG95Qqe3/qx0gjpq7J5rFhFRrqlrIk83HkDSshRxYijQWnuK511rtCN7z+8BBeyU+bfLkyrsGaP0RbOMkumZe/yVuUORZHS3JKmrzGwodQYCg0eaGvF7L8HMi0lCdzDhic6El+xdU7UxhgSHHe5dGrOeMMAUlPxZqMahduibGDBzidaL4HRMLtAtxA7JwvkibRBPcBARlZCNN6n5wXywylsiqkyhpgcOWKskgqoanYmWp4v9XGhqnyPYPjmfAmI8d0ZVagtjtdrGyzebaRFVJVCcyPTiSO2BTub28nv2VuXFgpmDkkDfkxzyW+LvxLOaPuqxWqRSlPUt2lOhqoVD/eOCjbsFg7g9f3wBkT+K/5ZYGIYfQ9/0hslASlvf9RAnjZY/PaQhL7Pvyge1I+UTZwM/oKCtkthVYWkfDwo2wpJS7LZrYjvJmTlShiYhizCsA+kNBStrcaLJUVwhkgviF9XDaj6a7pG6bmbTDtktpcJeiOwsyaJa+bJKehVjztfUpQ8rDXxRtNIVLj2caexLFu8imG6efnTaVBT4D3WYuUoFtchSeOgi2btmre9frrPHU3X6gPT3+60vTFMXnSUQi6a7f4brDvDKf6C7Rw0OW5w52B1e3+RvZMkAJeagR9KytH1eteIeJaR5sFeJ8DWGC4/0DPi0SoDvgJaCFzDLmz1oF7UGc+jLrObnxLL2DNvQRS+JduruGzz+8befzL/5JIkdMR/MZntvjXxKadRrREtYl7anDVLhKgQtr1Xz75CTHOPtPSy1UY7d22M6BMC3P/kHIC4QXOQA9Ly0oNA7VMhiLo0LkDJVWJQZKTs6Fd0TILKRYJkvqyOgqUT46mdSnR5AO6oWkaidrOHn+PMa+DGDR+JPV2ecMJWbVw37uaXLQOCa1v/wtaxdHTgDC0Ic989bmqsB/A8V5M6tzf7x8FnrkL1aepc2cHHFyZRPv2blF858LbP5Lx1rWmukgSIf4CI+Ot6ZcB7ZMepOrFUZ4vnU+8PVqQ2fWXhaSlOZuerqRaYNR4qEoIEJyk2CDA2l8AeFIA8N6ybKXfn+ZJb2qxFd38ibrMfdnTs1tr4RaWKxpkeXL0RJh2HObirGC2drzjURK/6+K3UtdK2r9TMPRxfr4M3oOg011S82CBV+lerwTCRuUJkmnFgSROQWbry9mCcoJtOJMEtlglojmZQjQutqpow36cQfCPC28Ny8wYPiJWitmTPUDigjo9OF9r9wKaAFPM9tO3QeGxjGMJ8svsecCQhMYLG0IwMzhfBU1Y5poX48LudBFWcQMx47Ivb7KcLUCIpKvuZr/z3P2C6+tgIGPSgH0XD/rHpaI3Z4uutmOBj2qDpa1v/upiHi8tMvYxZxYmoaIC2hqCsrqhnPuk9PvoUN43EYlnm3jnvw/beBYdnI2NGJD8npTXVWm0nMUoELIgRdDzMODS8BKtw71bgODJ1csnhDYkPcikbHAdwBFfn1HifwTVwvVB0Dz7y2K6E8WLgQPHph2yP6Spb067k7xztNwv8OsIFmINY2tNaKwu/g3RuzuekMaJ2fGRpEvgIn2sVD4xtu7ZTwrW34NNQDJjP4CAVKiUxEJUNOHPC2+Q/XAD+qcrpB1k0kdsJ1Uje0e94G+ybjljC8levtYSFNSanCgOW8UOhEeiEKQayIGNdMbIDZVWvL0RgfE0GfGRSPn4/ZXC6Hh14YmRl6lxA3RN9uzb9oS5QG4BTiFno3RaEQ9OtW/OLCGYa9DvEKxFviTA2BXtGrGaTQbs+SCHoTBZBNL1tZ/W6ttXgJFcYL2WzUUGqBjcMK7UreldQNmFB94T7AmiJeUir05OAcHFHgA/qQMhZJmjIaf2lHWsGnvf1+1lcny41m4bE6Y1QcIhpzw4eUvi2ukxkVUJh/coMBSs88aerr9/bCwaVj1+k134e13Y5CH67+t7p/iyRfqEFwmY0mntHvwiJQcaKPp/U0XMqkaelljRKwI5TJVkqN+4Y6kIgojpk9Yjb3LirqN0q5k7S8HcmMTrNVXb27eRvsc/oUsPlRAVS1Lzfegz0B5Zvzn5O8GTS8tvfswXVzxbv56Fgth7gVc6CmL+SNdwPSUf6UOjlTiBB98S0qwCoGK1+Nh27UZx0gPV7KQ68s+/ab91XadrWTGnE2RQzcl+S25LHgRZwD/iw8GXYBHUxX+KDFLsJDB2T83u47AE7lypEgq941JDrCH2DU4p3ZJeVs3QoHJWMu8Vroh6K7wS0pkq7StXBeLUgzWSntDETc7VtoUAD01QPP1iKtYmyyQaE7nHdyHDbxARAmC3PijdIJ9lqp0EkqiyzVXihVJXTTI/N5rHPtrGbDeZ5cizG5i3f0I9aTj7r/z6TZ/0qfx6rZM+kuSUNjq/CHQ9XQLQTcdfUNm+e1Zh4zIsEG1Q2tradBWNsgAABHjSr2jTi/30m4TBXgyzKBHrvK8e4caMPkCWM0LEfvbBKiz6UfdLffNQtKIAU2yabOWJRAU+aWlgC4kcqxvUs0KEBRSPD3TFc8rsHE4h7Ks+sSE76b18+8v0rQjBUAd62vhoUPCyr9B+PFVGjS8ApSuUH9QnCJU8Rqnq4A0oi/3Ym4hJ6gCgZ+fY4gPc64faqrmD/Oo7UBS8OmA/mhufhYtfUm/BnRxOZyYjEzfP4fKypIuvgEwRqGRO64VRHhtfObim8KShhTI780hk42QgToAiVgaU7IMM05IfiStEM90CYNqREGIiKUj9n8/RpKYJflKJxvjqWAGmv8A/gK+FMfzgTBSshHmHl4MpTt64a51CppKuDIwK8JP0ERS3XhoRM0eh/u/3rlFAREZ2bdVcFMYH4jo21K2qBDfDwXTCx7o5dJxYPCbw0Vc963cu00EFp7rjZhQC8ubg/RkmeC2Np4wZzui2Y8eF1wz5qyOcv8mbT63ax5zTvqNAJM02gvkD/g4bUT0vbScC2phgCJA0Ntcek2KOsaC3TaGgH4QQb9jroDSxJk828pQKPGHwPtoTY8q7AoTLyn5yG/AUIhraZ0GI/VfWxLih65mMmWzcrvpuUHwpYMUunCULWyXfPHnqAGbfSAWunKYv1LetdF9FriElsgjIzSUKrhB8250B+cBzCSRcEY+hlyc482LLJ8grvxnTRWADWlKKzKf9OGk+yWsg4gUZxOrszlDE2HrCtK7kIS8MOXvHMF24bl/PpksY3NL4mKI8XXMTJWe9gqIWR9E9PJvxWbFNM+pKofInomESujtZt27OZ3F8DSkAdGKUSCLvoXSzWDaXJRQmuEm/PLlJRX50LQw9JBeTc9FJeiAcrZ4sclN+T1a4j8O5ZIi1jXXmAYitRo5v6blkZ/mQJogKlokw6iqh81xwI/3VQ9TrHENAcmp3QWUSC4vVB3jMDKE4/Wu3IvV1LMpX0vZvYUUoBxr/EvJzE+XsCZABCPziJESPgdAfBH707RTG7KVwSc/OC2Qo/G4slof2dLHxAbjdbT6unRjfX4bmQZf/oUje4A9mnmBPF2R1F8OXZQv/8hwFvCc80Lli9+aPg2v8q1gpm1uN3o+wtuESazFrHkS3twTCW6/6DLxP6wPLHAa2RHcqmbTBT