Step 1
Work It Out
Chapter 29 (Chapter 9 Macro)
true
true
You must read each slide, and complete any questions on the slide, in sequence.
Question
What happens to the interest rate in the market for loanable funds if the media convinces the public that the world will end in the next year?
UF77xEhYo85wM4KruouNg6raMKybkzMuigOZwzwQgzYGqahxg5rrYKvhIa9BzQX+f0Jpa5m1HxtAYi0bI/S/lhiYdAdi3/s9zR12zsrZmIE2LIHngzsg/NPBzho1U+VXsZS+QGymcraPX+COLgjHWEJlqsd/LoHGSOowZO3Y/ziB99UFrp+MYHEtDJ4LKkIyjFY8eSrTPwOb1xNsN99twqTbdNIzJVUumCLLyj3rEzUpWOHaKI8V0mE2EIbbGb2ydSoKCMvi9UXh7e78y8O0sdfzRTYtDV+ndpRtAbdwj5ALLNRzm84SejL9RDtgths1xGmPV/0iP+RLK3UlAdfTGXOMl+pfPaSmJYup6Y7SeXdXipdDoqHGwTxqPoPReRt6A1YIA9fY1eqSIqeGE9/iSa7PcneikURKzve3k1iRc4pYQt7EXPyBUoAXMTmtKPlOmzizqUaJH2aLp7vniibTR9B6VypIOk2poYwSBxc88U9C+9ug08QWCfYBZ/IO+qFf4rPE+Ye+5XCqkwAvurQ6kDPIMLB7XliCebASyKDUQLdOmNid3A4A7ygk5Q5jvy0VLQ4PI0hr4Xbj8Zd1d11BzcEDR4xd4uvuGeqv78tBhVzpgsr4hEneG1Mo/OSbVXFuZca3cQdaWUEOBNTlYoRXeTeVKChkbC7Nvk+k9vT+GcmdagdHFS2gHxVbrd7+J1bzE7B5ytqE+x2skPjOfQnD5y4fqE6jw6v9jHD1rodrgv6wB6n9m+TaeNSF59TJFESAs6n0NYDG4B1tiRcIPVEUc7XWX8C0vtJJaxMsjqiiRM/kxfPSy71A5V85R6bti7zSJ1Pu4S9Kxr1fIc15eY79NSDmICSPSKiVkI4RI9Ifn/+DXr3jB0zJrtncRX26Za7BTPd0t4VtpmGzFfvFRhGv5m6Gx5NQi+eOAoDH2kH6f7iahIrgZXR7CRJA2t1PgN8LM8p/qsxO2xkBP+Pi2JDWT+wdfGY+HTCPoU4hBKh4NpOHfdG/Hf+47Sr50y7jBfvKEPD5J0C6sAdAy7fgDaNpIWUdYv6gcfVZiq1q8lpou4HL3i/DoPqJfS9lqbLG9Z0o4bal+liJ90pxbojyBV5+UK5zIXXlGo0bLChjIrXxR0VUqvBIs987qLIg3wgSUXYRv2nnAiM22jH9ayMwXDLTA9nOBKoyHF+NuBmXt5P9nRZlhqYQACNVc1cKPcR5E9Az+bMGkaX9J+MvsfMw8Hhg9vNH5+l7qjBnW4aWKE92Id2MSXIX1OENfcUmC/cHD/QzR4dW88T10HDgmt7eKvQskeLQn/Crlp7qKlCIEj3mZl1kjlNZ4UjitdVXLwrr92m26On/s8hJKFH0TOAyDUFniakYOr7p9KCoA1808Geu7UARoEgtUhUioSp8dzStSjVCFtcU0tbJLb+DXIHPmRFtAOYB1xcbD817ZPhP7/wDUMvSXIvf9hC6L0OGmYFaxTyPRmpFbPchXpdSZrGO3xlej+PDmWfpSOgH6KJuavdggUEeuwuTab+7r/HYvPfykYkEaRDtOTk0J9cX3ku9GGshAXkJljKEGK1Pd7GpXQOnMI8MxF9wOfHDU8y3QX1EU1TefMtZ9DhU7npLFEj1erUJzZ8sIUtzE/8tZTsu+dvMuoI7jOgSB+9fa7Wd4WLQlUcUu93dtMLrIJuNrSv1zTyaXtXiBwDwahSz9ZxCzykF8CRxoscWlNAm67Sutd+9DdJ6xIFdcWf4DXe2dMVvLNXz1oS7eFW1+6QSLiYt+jlBSCOu+gdZkev3YFO7c3+IvHc0JoLKjEPvDamGb88Aoe/jRQXSIgRrtm69xBvRSwjuCECwXVMRB6u0SFlQFwoTVygn3xG5TgwI0u6DYiOHFOPM3kLABXUkhwfpQ2WPH2sNbybE9A/2830Ql5yhptq5iGx2WbSRr6RPGmJy88LjxiLwxMIpj2oIKI+FQU29EUgVk8fx5tOZeOP2tlU3yJLs5y0GA1N6Sgz9LiD/S4F2rdcgXkzQ0ILL3HlIZAhEu7FjZmj3ztr8WvbUpxasVTkE6CF9XIfG/SphxEmYKM5eQY6fXY+Ceh5Z7ykqVCzy7O+UUQWvSv2XX3Zg1JpddbvriMNjzixb5PnBTw7FO+BP+j/XftooSnfSGfmaW1KabeqM3Rytiw7/mESwa1wt5OEmsIVivg+GorEY6YWOxMlqwv/WZUMvaHuFf3fahw5WZizrsWbph0/Vo5hbhsdpGRivKc5LN/RDw0czTu7xhobGZcB+51vJ+B/nrq/i1Izyo3C45gKTelpsf5LmLVl3kZOGkXUB4r8AWvSRMP6xsAiJi/LwELxqvOTA0cLh6h5lwey2Vpa51lyRogcdJ3iJxl2RS5VYlDc4GmVnvBU1+lxK88uiJKiv/Jy3s1e2cQBg17rE782uVHjDNW9FXlBxPpg+UG5DbQbNuR1+hT/0CgDgZFm9Lf06u9z5D0/FYUN+dIyLUIilWe1HGghUv0BTL9VzKWsLQdP+t0sjKNxwFy6ijO/p+EAaPCn7Uldff6F4Ycp/o/YIFkPEUvcwa7WUi4A+JWrEMXveiWJhSR2pCcWrKCFOfZD9T6SI/FtLJkvAdg5CZtJVxF+nvwgjGAfyfINXJ2fdGtWiPdynTlMwDF9NEGBULcm6kZjZ6S/HjkMQsi3oxo2RFe704NdZ+OT3WvaLdsZjaEhaIaYlSqAMyln3eFBMuDeX5yfotZyzCe9Vjsij5H5cGuyxYxF8EHHXawhOh+WDeQFuXcrTZo6KOJhzlggEhss+kX4TFRhWSLhwxFoFbPHHd9wc16RJqQz8OlAzgGulm3JsgNoFyL4FffIbju53nK671EyGLFZctPaomOVK/Z3oOY/IUnRm/akGVot763pYoGpVuD+5CL9EQEMPNlDfbCE40tz4wxKVPJhqKuuK7stAnJIsHmLLRVZBsbXPdDoBrSHAlr2m2rBTzj+fFjF+MQG/KRfRY85na8tHKDjmgwQZxAsyPS8fga6Icufg5HTZMCUeMBLnbplA83w5D3WbmvwEe0haBQab71HQJms4dZxw8WTuWvLAjr7vUY/9rJfRPOkatHpt2cjXE3qvmeCBRRaMTTXnfc2Rj/2fzOiu7lK+sQvbujf99B8cWhZxV6LGfRsgHsKejyKHaakOWgqSNEKPsoKddPBVJrCM5N2nw65MdgGbFIEUy0crVLeXprzdjSbEhsAXCp1KVNJT0+E485srkkydcTMvCxmDQHFY8fjqr+ZPNxzVMZb+IuZDRK8nnsayKhyUkuSGwYDd3TPl24mKlej/TGySfgZr2Rx/JNQlA2bCCo4V+nXeZ0lOQ3Ncau3Cb0tX1a9KKJAnjsi8b6LoKM4L5AXI89FK8+XiVX393lhCS71hUEFc69np81Chom6r0QdvoYI0Fbb/k2klDKQyWtJjt0lsSYBW4gDVNaD+5LDz4obN7YvM2+4CLtauYzk3Dq2lKA+BsH/1p5PLU09eRS+rmqXKwadOXQCn1TZG2guZPjH4xmXU5jntgAYsZ/gICrMJlQOt/dVEOltQqTIFJauudsMeptlJBmcb23gjlUAbI99suUH1oUle4O4DGvlYZEl5Xe75RSzvdQiklvpW9rJJ9HUY9PPOBWyw2kXuOjTGMJV9QHufP7RHSf8wX+pRF46B9vJlZYczsODHw3Y0EiRq5ak4/6pmgIF0cBQ5kdaZktxaAaEAJXQN1DTbq/8yecw12021//2I7rGcLst1mLzU2p2t68uFxJj0wWNFCsHOJVCDze+HdkIkIZxoVUBqvwWIda6rnBZuuKYEpQwpf9E=
Question
9EeHWkamv/MOMfK/tOx+QQjMw3sGLBlfHMHX+a7IG371nVcyNCzovWlKFmFjc8LHErf6YFtrz8phbpWhBqd/iotn5AQ8q5f+atWp6veJ9GWX4TxANEaH2V5XhkQnXNW76rtf/iIfRiDQYvw3fuzdpmyTMzeYrtokjGm/ar0ByzVvcT5a1NDR+MX7lAYmg3PK0hOw8tq4Hnkbbh3DgOre2TGwMD7vdy3Hry97t22/T+D3Fmg2x1dGwmKpksjcR+np0B2XmzFXPLh3LEjI/eznl4uY2//VSAQNgYhY0Wm8rVFir6/tSpyUnxpVS1ZyoDIInto7A50s3VcSW2yaDNxnP0DzeueuiCbgpyy5FGCH8hJMDz5HWKoH8cKrjb94H48s7t+kanRGLGihoRVIgl2VDp7vGCU7MvuxX5BSOuQ8YGbAX7c/OWfWZXg+zew+YO8TeagEgwZApJjnFuPPjC+Gk/2mR5lyx7ADEPv1UP1I+a8ri6/l082IUiEOt94d2zdFHl49l39Omqt3BO93k0bbCQLGA9Ky9/NpbfpWeHih3vCGNbrUyxqJMsUVmWbt+d9sChJRL2PVMUm5Majqvtf65G73WQh0VRKZFC8rX8KhMR86IVI95oFjz0/M5ulQVaTGgU3MePqAnG7w4XCBS7KuaLke7XcwjT4T3eWy8UJZ241huIfpGF+uv2cRiVZqyGN29FnnGU8ACtl7V/pYcqCy2HvmW4r3P8sRQuc0aXxWl4qX32metvGI+NQHp5xYdmtZVtdo7QeL1huLFiQIVO2XYlisRXorUJl0PmPDZzttxnxpdXV9HhJgxDx6LLsOc5pnU6PXNO+yHCWvMfGOfqP/uaPHIXqOZ8m3lYIQ1O5Zw71MjgpMAHV3oFnfvpMKPjh0IbqMBQP9m1vInWsBC9zL3dLRAzOlL2NpxFglkDXYHcdEIixd7RFoHC6nTJ20HL5e57AjvWwrzUeFFE8Bzr+AxGhbrZ1Hozel2R1IosMgbLqpwgY0N/9DGLPPFMuWgMMsO8YTA6XJIObezz48VmyXsWDJt9uIPtB2WIKwJqCuWJUnaKlE/6JoQn9SkrYa30lUHfzH9TEadpiCOXhCLXlicg3GEoUzDxeDO2eT29wB84UsPiiUZsj+SsUyfsmC6i+BulyMqfW/5N4sGLBaTjR1XnEGD5+wDuKabz3tbYM98vNuLu4UoCxZzAycSDdcW3v04yYkGAdd0/SHZ0ksINhOPm2CTSEq3MhIKCW3z+VmTPvSnNsnu8TWiZKA2TjrDYVGz9CsuoUq0/aNY81UOrmNGowyxeIZ8CZjfP0NQuJwxcyq3zip4AmRuen0ADcMhmPXJbSEYEUpCMmAwlglUqqhIrbtAkLTqylURfHsE8izi/Uau2tU4uWB8lka7kvmqrm+bST2s55zL2GxcSj/BKCGyHV7H7ZXSBPe28P2A8ikyuXo52trfiEgT1gB5+NusM25HBnnDHpOONfS3vpBjufL1ZCYCKDlSAIDL05b/q4ZNC1sYrUYOGcTYD6cpOPtkKMp5PjItt31j2XI+lBACKgvlMk5oiweRfxhd1Oq+fKcZBSTTa/5hJy1zZdveXAihrfXrHY4Fi7jtd9ryHz+04bOkQ4a9XqoUVuuH7+9RuiB5vAiWtTkm2hr7fW2pRK4QcHjUoT7KKux6SS0i7FJiu8dtqni99aZqj5OZUYDWZNm+uuSBQcFJUFFGgW/t0cqSQeNKONty5gQSyJt7dMvMvcoO6XWipYRcFxJ9v81shhKnLXEQaO+BEjHR8eORl83XSaS+do0o2v8XCC4wKJKexoJPx8h1Qklx2lyy1N0qqQkbiz4SiJNi7hpbfyfwwvL9rc0uFd84sgahJIJkhnV61Qng70yDPlk9PC3cM8k9KaFP7Vwu2KNGfDVgY390w9mdJ6aFfpRgfMBzzRrfBM0B2LJ7rdsz/tr2SrEGp17avGpI168lm+r69CqiJlJUnuQxWBFgCUkeX8sFCAzSYwWTnhgiACX3PAt2MKTfR+8FI3nmGzprftjuDOScmHhPGC5Myca5bc05fptoPk66CgiY3fGPLjK/+xwxGxFDED4+cY9quBPzD2ioN5JBP/byFQ/2KAXEbeVoK27MVU661hg6bqHHZTf+v78RUrMSyJI1SUZzHcqopriSmtC+jPheYFgnQytHLIS2B9DULBxqTb9tMx+sPWqkDedT7NISWytS3RANBh7aGefEpYvs+XG0bpogZt7hMRL0i2vC8EE2fQm586Sgaf+COeTEXVG7tc/QOloKjdQ80RSDvqPFvWVtrbhUIoUe5zs0KXbWwHmgNcV3sQ7zhZhi9Emjr2Uq6nB9U4OTQz6dii68SBX8BGc3+O/RCe6GX8Y3xXLTBVh34uJvcHlfSsolJFcA/YSwk4BTY9uccA4puX/3zxbcSW8Nubs47dJeCd0UEWCK6A7WVCZHAhRSCiRjzYGuc19sPU4iMqA/WL4YwVXMyydAFGBsBPCuRWr/zuXE5CnDRp7U82XLJxJ56C6qS8orgukwItbqhwFeGEohKaBtykyRhm7C0B5BOKzXj4OD3E12bO117PWo7keAKH3NpBMLDGkux0dYXJdAREc3q+mrtaq3xVpW3eE5wFWDNaiO1hvQs3SBNr0KuPL6Cxig957NoIehKa+69METTluqK0/LgVuX8ziXjoPhY8Nxg2hH/+tTWeKcU5PQhE4KfLnZApG9EmmOYDWOYK7+YqyORxavvNl8nueWs/+8lR29KOXcvxGJHB3uNhxTZgC+UDPqEwpB6HqoN6vdh4Icl+mCO7p2FmBmcUPfH/cP+7evXnOmjCKvObxIy2FxSv0tgWyt6jynroN5z9xwOoZc90LUxigOxZtGFQFTl4HeBjoyFS9who3Yj9eyjDaRfvCbrTM0/l1ODA3TD4b9cNhNl2I+HyuE8E/S7YK5Wc5rMucVCUAbp0o6HLTzs1bDl3Mnf8yO9uqOAq/vmosLYtKGQ15WyCaTbvEu+Na4bhLjIBVRJqKiOwPil7XwOZ7oXHimJjzfuz0xobZSsR+t/JWC34AtaNO79D88AWO72s1qzwNW6QeXkl+8mFmr3u9if2FmtRlqwHxgKd6SDEN3nvRVLf0rWNyipdkHcqGe/DJWqUPKbnyD90u9TNUuc5wBH8D190QwXIEkhHfzWyxysQUYEZdFFcNrENDV9ojGJc2MK5rYSRMyj4U0KlQZefKEOv6onbQ6K9GFKEDkyavyixaMXz3B14StngkaKwM7YAyRZu9prxg86p2rCBrMQwJcYpekHpUHtNn0AMOXoAh5jr+l+T7HI3lQDWHC4c7DgopZDWdnczqUhJ2SLeIePtvMElkQUR16F1rcvZpIfP+iFE02DL9KoY25EQAG8Bf2jZ9U7TqtR/FG+eifc2YZt1FCGI5e4+zSS8DQPNo/YddIhARSHfRxCdUdZ+rBg9u2FubsWvr/VYM7IEToBmO1/zMx2p0QDBSrBEAqFoTXU1jPuH97aJDxCuXTpZ4VhnS4m3dw/bNoWtnIFBN2FPTuqZBVndYujH+UHuuK+zjR5lfc1HH0v4K2zCOajzeGaLXsWx412PwehWeMAWPKMDB+iaerAggZJgcd7jHItsVv3dEyCsm6AQwmBuODuNT4/8I0PkDM0sscX6pOH0dv1pZdjvF36Qol/ntq1xkdb5jl9XdjnNIDfxOFsVKYO64kAAZrC32fqMj6FGTiD4sUcTrxlfKHz41jS0UikUanQdlZSoFjk1GghflPcs193o4QKCskPdrE383I+7H53Nc2dRRq3yVw2RX6zgMVClILNGgCIy1MgNGBKD71zWrXoEOIK2G85tMOlSc+Csd1zVbf4wZWjfd6XnPLZZOxHiB3KiqnWDUmFH4a92C7nrfVLQDkw==
Question
eaHc9q70SMdws8A5UNdOP6+KiBmurgzMQ5LSNZd3lTSio2Dp1BTU868qwUTTIQwwuZl3kxqVjH2nwPM5AD8F0WgandMjb+rclOLkR0AAQ77sy+mqGo/lWG8jghU3iVmlvMzDXKjsZGoHX9DX1/sEgOQ7yUowAFmwYCqPVIn1wd6+Czs7v26tSdN0lMLT7BDsdSXW6c+Rj4RNIwu5Sm1BlCkeDBewugmScDlLrMmXuTWhIkIPcA74hWSUJwRDJs4MnQ6eltV2yQB0s+WacAFMTmM0C3tG42z3WhvRgpPqOKocpiGNnUK8S7B/8Uw7luqKDYMFvs8jWStTNdSfD8C3HiQRBBq2Y8L/JeSvqjOP2Gc463SWwKGegGpwtZXl3VFEdhfnFdQVL24nyG0F77Fbihku1czABoLPhDGnjf3/AOmDWl3CzDScZn5ERgYMoWKFz6Px9PKKRFXNYXSMoIVmLSVYkIiICWH0VzoOwKLN8VRPDqfhd/o3lID1nfFEcTbg4MthEpTvH6Rvpmh4I1xs6LA/dpfE33tuwQ1NlYMjpJ7uijeYZXjweTDacirW36kfBdm6/n+9VqVHJUqjWGGEixAD4Z4RC2ebO4F+lmOtbTpedFGnSqP/ZHKcj5eZ6/u4cbXBTu0nK1yyoqtQT6tJXnk6TIVF0+fVfhNfl/al5hO0gqsbaSGeDXK4xVgHtRvRCRcrn5n45gFw8aWPjN/jakbqDoB1ZS7IIz1AdlWHl0jZbd+cSLXBO/RcQJ0/nM1fhDLfeOwXR9IDn2H0uZGrD1jQRLTx/3xkh6EGHQHhmLIrhN4Ks8tyw9YJC3Mn3/47J61Uxw5ANGCfK8BagMhPXqlp2VbIPOyfl8FzRsurkv2HZss6NSmxdvx3w8/aK0CmSQHCG5H7sk8X5DSSR9WDOdA775+ADnJECWUMeHhTHattWtSpG1T/P8+w/Z+pKHCby5qsUsK+l749TdOEvL+txyWsPzIrMSXsffO1UpLHGoB6YJ78fSkEk02qQn3p9IKtpdexeK6SxptgXlB/AN6QMKNaEHM+IX+wmI8fvYdMLbLUj9jLRi9RaEY9JvZD8CWeeLV2t6exR3FNyiEsnCVkNHOY6trXi0Ld20qnk3w9CCGC/O2Hy4hjGZSbU4vNKSQZSZz/Seke3n2EDARr0EfMZJYly1h3meF1LearTOpH1hf8DSGBGupgvA==
Step 2
Question
What happens to the interest rate in the market for loanable funds if a pharmaceutical breakthrough increases life expectancy to 100 years?
wS5jjoTctr4cj0NMinGO9y4hfT8M8DNJWQTqEdKn7Mq7ENQ4kNVZ3RzvoP6lHGUC4bpbxjtuOrSuFMQEs96uhmk/4CTn8MCd42krvj3WFmxLgoMK2tDYZRhJdXrlMLJLHsTUpqX+QE7k4RXr6ORdCqaYTn7Xm1i3NLznx43ZVElkpy6VtMlpZxfDnnaGWb8db9ob6tc+e6pzDGpA0+/ZoHFjPRbbXt7wl2pnnMBUhkJmGaII7NAGBtqsL49is+sRGnIuPxIXNmQ1jiecIEBa+dO923SWfOzksNePqM8YE2cDXT6me/6Ny/IcQXSLeR3q/rO7bxmC+J7z0G5W8y3+HUVCfA5wfa40IjsETP9+K/iwSJVJ3xxiUL+v0zjxEWo8CPV8mctDKA5wRv8YbZAvDruB30l1hSghvzOpn+u+5mGeovxJbVB7yc0KfylNVfI1EDdR+a7R6oejIWsA9Zxu4xIHFuROKN+hxI7JHr42enVi7IpTLNJg0zPo3gDSHw37ldoUFJ2j9xrYEyLOxtw6fLo52mQlSjiJCgRWcPsbU0Km4KGlRMnELjQXEAnHGK+VkyUoN5PdRRb8+JByJ0IOlZGLF+ZzUB+S9+BNkI2RTTOwDt3PUGbDTsATbE51vybb3iSjY9BxJb3nLFhPAn7kZAeWlQAr3jqYIv8baVcJo+OfgH7EPil52zJUKLEqRh8nUYD/MqVp6439sWeA02VZHaxcXD9oTim/y0lakcKph1QgC3rp1jtzEqA4/ai6jKR1uE/xq3X6hlXJaxbd6kg8o7u02cw8T8nwMPblWbau2W60rIMb8WtbwKnx7X3iYxsXQiEE0mtMCeOuVopGGnhgPChPaVHdyMBaRZR6CzScficeO5lTbmP4GwtV47XPErCDgrxbM7/5hG6JwmmLAi6ZQ1Q/PEZyk6D8BHMM945J+qmfIwSHBM7f//HCohm3ke0VLcHt4CtlV9GFzLyFtMYT21ogKSop1mAHv0SL11W1yPO751YvJnta4bbjjRSzDY78saKmKuxT27QXfgpHxMP/CrUTPgyieoc2c+Wys9+QVwLP6B0bbVG5ys9jGRUv3myVZuDJVTev6E9YtMVLpVv4M34cxOd0jjGEAMMDW6iNGGI2KrzvcZdroOkmcwQWzR2OvpZIJsuR900cYKfpXMUgBp8fyYABFAW/HnFl0/gs0hGBRlBE4XWYtscTGQWp7PJuYANRAVSazy5WKzUFxJNDPR4r9h/cBPpu14z/wX4N3P6P/tLE9WUmphBKfKUwhb1Qv0POo8s76z9qtQvSyGsL845iSU9BkPMrJeSg6BdIMIA+RC1Fi60ncaER2+CYXaQQdzhOxM6VBTSc8vmSbQ+soS103BF/BIIiiTsZFNNVgKkDhLkseA0gibBEBqC59SM8gWOm76xW+TaHMlvO8AszuZra8+rRPAevWELyyCWKnr2aoy9RFKhjYEDbSETJRAQ9UgKHv2JK2nUh2WW7Wey0UuJxkTH3VWyPE9kufFIMEPg6/hH4cWTDC0s4NqoXRJmlvg7ijTwpDBrIid0Uom7yXeIyzht735FbRzuDK0RCnbxu5T7IFbWsNOR4+5cxMniIalrldfq/8hF8xfD5bl0YVlTso49VJbcVBIwGIAqbZpavB+geaKQBM5rcasXfdhfa7o3Rw1TcgdzTCC+137Vk2aF7yTJJ4pP77Adj7LQjq7Cf2z7n9P6MT0ynNbfMwpkwi2kKpaFMaUd+1C3VhciIZxzocPWeGS1nYdj18H9lnNxGkTd1SCodW1Fl/sq3KdfxUPoOCEmiQ+c8YJvMfIjVh3gIMyCqBg1MPAT/ybv68jqwmmCrMCrELZU9UVo3f2cC1O7NZnWZig4mpaGnc9ELwB8ix2kSzuLiTSZumTPydHP1YbiCc7z9VvwhdgJF1tk0tfMWsdtcv/GGK69fBUKCyN1ZuItNzPWSC8gpIg6Y7UYmp486ja6kCew6HSMUci06ddgkrTQnXII1+MuHr0fL877p+lHtrOIV8d66CILtQAiC/YfsrW7yHs3mhR3+JzE1FmeZjcLMEOid2gz79J8VRJXC6UMF2627dLrvtnDSS4svomg1jM86SWuVMmuI/M4g778QePqUbP7XjqJr7TrcxOYxcvXR1vHdfGg9/KDiR0xGaiwcQVHslnpLARTZfVZGFGGnLNvVQV/9SzlXINyFQOB4so9zJBtj4+5S+Araynp2GMq5Pi3aGCdsw6YtP1v8HAcp+KQ0DqiYcab3/+Eka6OhemAF+vttpPgjeqjsFjn8gh6pPHr25Y2BPXFijdjIVvABgCMG1oBuKvjO4jwxQofLKL0Q6CAi4VA0M4IdO31FNE5XeEPuT8I0tcHsKKbj7YeacsZrlpBxroa858QZJKGcKiDMG2mmXoFIVORd5NqXyjpJe/6g4khSrinigWinLw/AKuiiszDi+TH1whAPCd16oOaNEhUSXFd/C2kB3DiHOT6GV7Od8FCTNuTEpjn9mK9svSng87qYvQpsZUy7a2aheLPg48aRgPaApxtnNPxIQp45b0c31cGbJew41qF/1oGNsgB6drKHGbPholATueQOAKUw2fOdRCUtxxtWgbHl0wHi+zkr1//v5R7X929MciilhOzIbC8rTENXwb/aVKlg6ZRykLm5jRi+tQKrqcEsSNKzUt5otdUiocpDn4k1IF9N1Wy/uXTLSOIRnuLG+G5BSTgTs3M/BtB5zWC7f8wmrz/fTR5bldSFxi/Uyb/Qn5W8okqvlD5mascDYv36sJ/pzw3+PrUspX00iw8uo3B8cwBdTaLE+a8/2bLAQcHxXpuencrqMKlUa4LcN5iXp2HBa+2N+M5wFaxLN0vVRPY8LLPX16PsXHnHsQn0MOCvDFNl5LMLKygFoPkY68WmQwoGazFoIIe3T39elOZ/PJkSnj19jEwSUo7GI62ocFo3kChU67p702yk30yuobGgIBmn1QY2iKkqLp/hwiGAh1y1Npq/NR85xzH6Rwl85Dn1Xjuj/bKDnVTiuSV+DizhBCWlN+XlHpoLikx6HqJ2+zrnrSbIDB1ds8gtje6d18FJU18kCPzkaeiKGbo65klkbZF1JBMvsKVuoiSGKCeLpjweUDyaYYemq8bU+9EgXmNayfPUDDoAzNdLZv9nGbpSm4K0x0PYLTEoCKE/PXuPMAdICGaT0vLsGGy1IYouocq1U7WrlWjyRoH2tiRUed7RmEtmu2gJWeaEgYg8fjalsQoVtgLLVBtF+OwNV08YI3SnZuECoIQ7mvW7y7FmcTL9FTSaB6r8tryJmvg8wZ7f4MIWAzxnLQoxuNcxWD+EcZ0itJ2Dun2Q9M3L2rvejpmtBXeJUvvON0IpYkEmUZx2uANVwjDmMND2bnCaIkdkZQJ9PhtdbhlD9bjgdykKOVLXmLm4qMc/JxtTP3CeWZCpLGnejPe0PBPUlBJZpO5B5vklDpeIToeumv3iGoJ+dRULagMHZuijOmZ2eiW4ErzL7x3aQjRYB7dNyx6bMCHwk8lmc6st6bb5DnCsdJtMSchDmh2/Jx5ojJLmT7kRQUUjhlTxGYue3uHlGW2Cq+ieXljLTDWcpjNvF54+bomHOmBRs+NGIow3llTY1EAWHTti8Xiayv09FHoUGhl78hvfrBF1/2L6hEzkI3YXndf4RZ4vUhP3O/KPNjockGQzTU4lWgNkdjGNl35NEWbD9QScM4CmTK65DBmCXXLUQHt15h+Dlly2Hi/kBtseEPxhf0y28tx5ez1XjkGRXGKxChzeiBsf5iUUdNBVQBbtf186cMBHPFmZtRrQX8aw/AkUzCousDJvydJO3RMjcRrFAMlF1RtrrEh+vnA6shb+A1+OGG2Bn7vKZwmXXnjz6qdbuU8phsvlhjs/jMLk4zvmOtk=
Question
Uo4HPUgdSj4rIepjzY3gDbimMx3JfPniDphTl2Eq5rHeX8vNziSBGuBKCkXF/6UqNR40Z9umLBrzJp/vBYqnqHhDVq7Tr0GhUotnODbZPNkRMCk4C5QjUMAxVTsJJiJfL8A8YdHTgJgcdLU5dXSjY7o8fzqpPUsXh8Y9nt31AKeB+BNlcZFtq0i5TA4j3OzmWMZ/JycVyI8HO7Rt/Eczr6qwitUnDPLAJvpfzUKQyAk4hXhv7TLKCpzoNCB/EdZRRE6HNlact0CK0Y1b5dzinJLhom4F2JUEHlmcsveg0drHtrG/WGGW+50a7Dfz1+Cj8Wp+c+vbV4SlfUKVVMYr3+3ZIlKBb7mGKd2Ay7aPQreeDMSzifcCV1w/x7ygeJKZ1a13X7qM7QcLDO37ZXZyTxJIKThN6r7xlQV1ez0FDhqIBYvZWWnduNCIR1ef/Wri3imP85GyioWwEfIOdlNwW3JmzmMU2KWep4JOMwKibi/3IoCakbGNNyGvpHQ6XWHlKKV8QaeXT+Htpv4AeFiJCNfvelseCuwql1j2P8Up4QOdtbiwugmCJKlf9RgoE5pSXz3v8nxVzfTiGKGR/3deuCGfJ9m5WTrsTtSLl1UBAh90eEmRPcNMvdIKSyNR9D3oRTZwjXkXnnUtODEOmeLI9GQfv0qlKPPKMEp3eOunAGqab0pTVLNl1+ve/sBEMmaZY0rt6n8V4EmbK2nFfDQ67ILZcd+46+J5wSrOQnsUImZRPr9rQqyJ90z3YR7cMmp/T+KCqy3sSoFAk8d17pzwbpgt1+PuqoylJsIRaQhsAOSQmmW1GIdeTQ8/MpzPDsh0khw68B8MkNMv9OclBWj3P09Vd4kvKhAKiWXvMwSywe7Bof2nkRAV3rGkqhdvq95s5qM0eVtO5XRnbqIkXzxG9gJagIE+jIiuDJG4W6ro9VQC1a5mQkFoE7eez1LgVruOv0i9rAMBwxkPI90Jp8Mm0LtazelmhLr9I8Ve93dPQDXbjfVA10ADh7wyLyB19tI7C3loYWCttYCnYfVhfdVL6mnrGP6giIP1i49SxpqC8W+/WZGCE0d4tFnlY7SUU5UB7SkFdBu0UxwcwvQ4mJ4ss1m71Jk7VDeTRKjdLRt1retPIFaTegsNG9tQierRH1RhGd4mJs6L1dJyKiKpi5APh76z+9BqzuSG3KC7C17id089BLSGKlJyittfvmdN0s2xEN48Lcaiz3Gbq5GR/4QaKXckMC9iEEuwsDNToOvL6MeiS6x40eqMtfjc/UYtRoupgUiR3G7u5qmEYN5ceTe4riLRfowfzHe7Kd4gTvn6HSkS5Eved4l3RRXcBR/lUbCG6Lvbrrb7+VbfANYfF+pgMFgBwR1mQVF79y96ZTHMWT+Af4KM7PKdwfmhZqnCCGuoP8oephTcScOgxZi5WRFSQT27xUh+QvYASGaHTbPwZDAloOFBNKfPoMH16HF+H1nNkG57u9gq/1bC/pj07VSNGrJRNe7YhB2JkhTpJO3YbImr599+fA8En+aJXM76I0MKJ6s9YzsDLpY4KBHn4iH98fonkkoF3GAOCpjdNMcflfoloGKnVm/5eQnY5ZXYlvHRq1YuyWnsTsQD8BkZI05aMPpkoOF5Q7olr8451GuJ5QceqBbKm9se5+qdYXiQxyg8uVsjyyz3M/nAfHDDvKmPc7y+dEvL5s5aQ+mu9NVfuGKkaMimGvODI29WWjf3InpW2nLbPDQCVuspjgrpzc67s0O89z9JWcHSmv0QWo60VLTMLw28I9OEKhQj/AsHgmr9IvefdHqsznc67LZRcVCarA+x+Rgs7jBPlISuolU17nuAKoZaI562uKKYhplv06s8JvhOSfHKwHyIZWB438GuHrarYMKk5C0WE43zE5dEtlPL40a+nsj5H9R2jrBgzfXRfw8pq95vOjuHNbkpSpTGRXyWyxT4D6QPoXchrgGyNpH2MH28Ea7G2WUBeg74Y1FHgSZi8TEmzcSbnRRNjZGhzi49ZSx5bb9AtKmRSVinbhxQwC2d4nj693/AtX2AQQfeq0FctCECWQgU9Z4bLX0hGx4bYt2syXMmIbboCBASWM5DVqyDhNQc4G2ll5Aq3jupzaZKhF3Z6EAlQ0k7J71qZq4n9aswZzrGvIp0Nli8IfuLQLYr2X0uFVCtBjVhKD9eO3tqtwATdZe5+vSuQbJcb4VzJQkkVq2i839dRvpGtqGRZAKZ2IwXm6zyVsHcsnH2fMTikmgoxqw/fqp4oUJ5OY91kafSyZIQBZrLD+8kb8I4W9Wxcvf+1HS+DCKwvErl5YqXqkUjF/Ob8P39PRu7ORhvLHmZCrvUULJrlHH5z6TBNEMnzpIZWeZ5wLt3oygoj+Wqca1Iv/QeGDs0MLn5+znYIEqKbXdMYwRFZfMaBnbR692L/XytKAcLtcjtrbe74ygetDq9PCgzhESVrGfyO/J5TII7EsNSrM6PTfl/Wp3swnVf2DQs9N13Eb0zl5TglPhk0pxxae62J40zfc6K7lyTglwV2eeByVei6bFmctzFA+r6HVZP0vlb4UMtbNW3XuyeC+FeOBaEU0RdYopY9EiG7jujz2AmUE40TNqLmO2nHcB5AnL0FZCODZ6Xc9/0lZ5shrL0yaV/Tgy46LXFBZ/ZmMcbckVHjxZudfYQJ/9+FCx9MohxEbvClkydbeBGfUQLQtiND13CPxcvzBVJ77+Spaa0zR4PiOxzjqtyIGsee2ekHBhqPwFYjbPX+TOYJJe5wzxU4OebSCzxrJDTzrGIDh2upieJG7zPIg8w4mLH3/2xzcE7T6hVaiRch0kxB1Y8k0Q+b39rbPiir2q7n1K2eeAMW9ESh2Gv0ZoZSExmMRy+/3a7S6YWR/v2sBxWAFHhpPtdUB01pD874sR4WHvuwVNuRWl9XoMLIBdKUGt8C9XLDXrP/TAKfSMe+oPixVARNIxKnrvj8cx4ZTLKApGSncDwIbv4n7O6EnOg4JLg5tbd4nW8LkuRa11te0D/hP8bJw/HYMWOUjDK6nMvq+1Bqp6mc17jbF8hoq1/xKay2UIV15GpDBnMpMtQDbEXCNR4c7HF2Zerf4Zu5Sf+OeQc0GrpUGRmpaMkvIbkPw/D03ZpZxcpwWs1/WY7T9oKJtoTevCdRk5tijJXo2plRQiKd9PBe5wBNya9PAPJK4Fl5gG56gth4lyuv+YKvJSshhpX6jlJXixEyXpbkawRyla/0C1OzLL6IMF7JbYD0eNUfX6nnz3Y2S4PZIJYwnG5IgI4MtQrrWNYn9axdvvxWaFAtAPhDwy1qtOO5oUlpwltcwUK+Au3pIAyKyqmrun6MRjW8+0yZXy1uNbY9r52I65QqiRooiRAqAuS5/f9sHtkeJhpj+VKK9mhC2uHnps7JXYrvw0AoJB3m1LY/dfP27S31SvtvALspCDSag3ONSKWx6XRNbg3VYQE7STr0on8RV3n88mXpRWuGK9DL7GrXOwGQiHWpankQKr1tXmNXij64817VZUCuJ/pF5Cb2G8n4VPRP0Xj/RGZDFCdTVPfqsJFlYWk26Tv8W7oZyzE0jdGzq0qZyGUVHFIo37m4lui/KCOpZ4wUlKiesfTutSqVq6myvgcBVwnBne1X+bUV60T6EHrEHKsHPboZkqiIOBLHqEWMf8oaGqxnZeq7Mnduezk1NZ6C9HP5QQL8MbySGa6IYvNGiA7wQyG2hJkRpbOY0z03kh1WtZeOeh0HOWHeSuylOnTjXWH2BtDF+xmo03ssCx8jrnApxtbRiHwvNSDKb62BML42LU9vfvblNWnNbrjhVUyViyWoKKWKljtNYgjGKIdVWWIaUmGOdpn04/vy1Rm9fgsGvkGZsvSdYOMguI/fIygyb64KRdmmPWLVjZqGz/aUdDPcdZE/yy/Gx27dinrVLKfmcA=
Question
Eut4Put4J3ckEpLp1RWGsuftJIO6BC651adoN8piR0t3voTamuFxzmPU6lDIMdkU9Utri+WLmvOPoRTjLK+sIVhWI+SDfZvg82tQbSpb0XPzSFnuJsabV1qJoaWnDOxhukvgTrHh0ukmmoLXdwb8HEyooFkUEeIg84e1/2fzUKF7SVnsXcCzt0LsljgejeGiTeWR7CrRd7HEELsOmEf8hHesCJySBdeSWHApL/8H01X0F0uje9s8qU/f1x/TXhWoYtYCRz1KrlSIF9BOb9v/8YqXnHdFVTr4j8MlWobEYqUaptAzw+kCl0vqiLtDNxLjOT4k+mfXrhri4OevxKo7RcNdp96awIaY+hrTD98AQzVOSMhsgZX33ErtpldigKVkbjEnAgAGGivsH4Bo50BweCTKLwbMglA9r/pU4pewGh9A/lRo9pDJPugCbINykSz6YIRquRqsbPT6lAXCOJdXxoQZcmJJ10vCAC9T0NpeXNKM42rfUea4eoitVECLsXQ0ht5uv3NLp/BJLEZl4mz6n3oMCt9dorKh2ITEV42ETcf6HTHUU6DstckhJDMNV2XcxluJtq9WMbxvQKnzDN47KLLiV4AZYjrNACzR5X6KWmIesRR4cPZDhdpvnOG9klGmvWF71rIeKBmRdonE8YEiFNHaLxmJNEy5SCOUb1Q7oL6RlXUdx9OKK5xEeQlm3AdrtJ+ryJ2cXeqqYi+LLdMss1yDhM+ezuDipE61O8UcSBDOtYRW3dKQdnaVRaEj+edLDE8+YLBamTfp1LX6JGg+nw49PjzwUhrFNSst1ZPU9ka6mm8PsICMGKC/KTWjPeFEPBMuPX5V0xkpHKkK8HmJUjqWaNo44VHMyK056eyUHc6E0QbMrWfmCgiQwLDTAtqu+fSbdJCBBwblXc6749PsNtpasF2d3SI8G8yYhkbxcthrD3YyPAC+LgG02PzPIMDcRs74seAULiIENyk1lxZEyKfqtj2V41UV3zOOsOXRxgTJefTMJb4VGduImMvBZHFpX2IBzZ0TbEQ=
Step 3
Question
What happens to the interest rate in the market for loanable funds if geologists discovered vast new oil deposits under the South Pole, which would require extremely large up-front capital expenses to unearth?
boKU1LrlWiNp4cldGWYksh5WQVjgEFtUWB9OOdCzbLCIkNAKQlSUc5gbT2oqvvpH1h8aH7qAPhQWYgZlIxX2IL/ZsRdX1O43jCqTnPWd/Feva5BJgWhTgphrRO8FbNjzjn/h6/E85STajEVTgoyjSuvRTQdiuzWGWM0HUi/phmVyJW+gmH/OxYSxXe6XHSFdtCsvcj1dv8qUc2T/FR4imET7zHGqC6GeTAoPQ08mqHtKlEqmWwPYvMYmwo6/tZK3bs/NGtqiSShqo4QBoa1bpgA+KrjrN2DenzkKkelZFlMjwYz5xJ1hj0s7wp0sJ3E6gqzgQsecDPvRtF914Qi1QM/jgErqvoFKy+JUZww1ylVD12Yke6cLGtfl7AjUTl5tipQXzOEKM6IrQ/J6ioChMtALCsBanQ+fVRpaMvcSCQnS5NW3QsJITrEQAbHIc/IvdVgHWuDJ3dWIyYaISnwfE+uJae7nLQ7ZyYkMtVRVJmut5tX8WM1ejIQS1uzvbhec+yoDchAsIJBMAhc/CvYlqLIIz+KnRKmUlOEfh0gpUuAb1iN+AObxJR9N6YZbRz9SQEYEgXY3wwmaXL9QvK9z9WvxNX5i4cNM/QFgwl9t1Lia8vPX/qngE/bCmP5S8MOzvvI2N8Hri7EVAslwJ88Ie3htFfIC4nOqOLhsPffaQbVT3AEQw0F5F1ZVjlOfS+h9GSUm92MEt+rAsPsnODhlxzPjtNjA+yo5wHFaWUTTLaM7e7MvuKI6T8T5p90Ce5JdiyExR3oK7Y1LXxMDyyVUrLHSZQv2szEXil07Jnq1fvIQ0/b8CSDs5skc+wyOGZzaFnCUT99h2igv5ykbQrrt1+Ju3ZiToqR/SK8tTWYJpjt1c2iBIK1H4qRerfquefWfQFGuSuD3NCFHPBjGCoUpt2R+sMiV3JC3brptp+pItohaXfdQqx/ortufHauqPVKcZdpg+9LVuVqA9d2q8GiLFPimwNQuhpYhJM8mg6Yr5jYrFWf5VrhjpcI5nZk6sWDm5zAQehXyGKELjibx2dutrkuDyLaXUP2jvhK7T5EiwvDLSZyDi37bk+GXrggZ6bi5s2flYat+C4hyjEGJXikY6wbPTyF8NB1qqtuNCms45F6TNGvuVDGYUXicuEjQnZIn328Uxbjr5IN1I6GzBDZWhV7ePdjzyUJFo+3SGqh9J1uLhnV9lKSH7rp5BBojdSZutmLVBL6cbcIGkFFRwU3jOk28KbnJg2/L+PyaFRtzvF88MOBQIodKKM65bL3mkO1LTSmdZPP8RbASGXOamKhEswzPesw4wYQ0ZNDK3JPGmql2PPH9XKjX0yA9s/X8ZcIJVQrAj0v/Z6fHEE7mZPJq8+Wk0Uda1fUurcFHbysi4yEcIvKAklbjNrtNf26I9hpuv9QJ1riRxvW5MVw6Ok9m4AUgyuN4PCnDJGO9JVY8mEfZLcibWNd/TzkkjuBRNot6hdCAP+aussDSkojChnK8bDwTtonw31RuhIzonuYn6oV0RFfUYy8ETyt17swfdwyJZeTsCRf1qvN6bQuEB5ONJEbSZaJhlHMaWy2qwyf24793X/bSzEMnj1MlvYGyaf8UqUra/COYCej56OtTPy/EyJ000+s9NfVp2y1DVGicfKhiBiXccX9YGIdpGw+20Ge2urEpt1uxMRx5xdHeBcTW4U/xVCEkSJFomM/vtWkAtJmY55IkXhjPxmnPME2wJaEDThwl4iwBsiqdoZuPK3d68St6tTicX0kLmiklcN9DqltufCMGG9gu77HHiCVAirIkwDrWJQhznH7xftlZfwtOe7Er8ra8FehUCo6imvN0rAFzWj2fMhB7YMnvH6WvF73L+I0YItwxmSaE67vLI7JAjxbW8THZDMw0pSev2oC/arhKKVK5J5ZcoLxJglzN7XLTJB008ljFedQWT5bWg4/aDiwiSadHDYPieGf+tzuGljdy4xPreiemevLQlXaux99AJbTJWpjAMucmqGmZZqsHYuDSBinXGiiAH79ioOnj+/PjL3NCtZWABnCxvgKDcgHLBr/1rnkRQ/XRZ0SSofHAf5LnYjZ4fUjwInkupVo2k9t+6N/8GzAdE0tBR++jzmlxK56SqABqsyLGCVyxMlVJ+l36LwFNiv6q3HLkGDkOvK2PvVEyC6A/6Uy80SZF8VkRBIlZdC0spmhdkYdtKTD6Z7BaM/3qH/OgVm85yF1cQznRYQ6Bx4w9E5gLhRP7p5ekq6wVJN18F52XhFoE/qyMoNt7B7whhdEAHYXSKCim3fDqs+Aj9u45vjdcxMYMva4lAQ7PZz1WoDxpZn1H5I5Z88YiuktI0bJVgoqMZH80yk6wKFsqSjil7cfQvGGlZJ6SC04h2vXN2CaH6iOr/pnZzZEo2ySyLyA+i8pjMqWZ7nTDh2fcxg/badHldWfFBZgWTrLIxS933DAgfOyZYyezIXzsMgrM/wks4NiQdxNpbySZ8KzReaihlsSvhDE+on8G26Q2/9VMEv993X8uBRFg3HfQF01hL1Snn8iy2DckH/uUK5mR2JVe8eB7fNzeh+GH9ty9Thy8kXbre7k2XSe8GXDgxsIDUFZzU2l/QDjnNBBK6ssfoh0pMnnQzHuy/1tJFHA0EiDGp6YLfF0cLVsB9O/F/U1l3epv/vUSWM+sFCpMoL5OpLLQ19AeavyYMZVTpvb8yxo/9CrW/52hdAa2FXgsd9uSKAxix7atW2rQdNSEg6ME+P4Q4Zx2hTqM1CdcxD1WkW3TpN56KOzWF8U/qr28xpJ4je7yGVNeIMzY4VigEnkZ0kOrk3d264iePQOW3niH8+yicvVzVMf/V+SE3nIguk1OYTyx9Onhg32xKd4ggMWCyoNG/XFBmynWxBjqat6ySoimUSef/cgW1jssgCbu4CcVvyaZA1zfQxFF6NoY8FgfBeirOqiBFtNN6+eS9Af23dDsG/fiqGfuoM0dW8iX7C8id1n2CJYmoxDhD+ZenLXucTfIKIsGQQ2bGU0GeL9isgtDzp0iKfn10es6GDQMVro17pFPmoYiELtQt0i3+yDt4xaSbHXYTuMadAB25g35jCQi+zV84/n8CjOXko42Rok//P9O1l3PFBpp2tbY/G8ver15FaS6436sunb809wDkz/iZFPgbZq8uJIHVkk+kfCjGcSQVkuiBRbHdXlyZEzM9UDmvuPdSsBIjNWeX372g0iQZC1guab8rEFZJm0aWk1dbTONzmhOMSeRuVt5//yoAhUUxfTxoP1ldl2DTRMIB56JPEZAUrxaDwPzSEgs/penkTKz24aaWDDBUgvVzHCnnUPXtLM83R5cnHsE8fThAeS2hUeaoE4n88iGOTL8F95T519FnEozQd19NpSWdUQzNUTwN5L7sUFw6ZM+Sxmz3f76ZoWuEZE3YV/Xhfpy5HlbLyH/nsheUxPKzdZaubARU5eWIPv10QiFAUPPRduqGKx0C+n2+g2Z1xBROSuLnfr+3AMoRYJ7hrpyKVGZwwd/6wYBapPcapRfERtefygV8CVjWtCOzj3Y0wFyWVMaWh5EjN2FZfZ4pFyscqflKsSoD5GLz0bSrt7TIAw3fJqlWuhboZeHrEh5ry22uqdeCkUNIMcCrtUJ0nNN2j0IkVqucr+Sqp35rx8Ld3zYwq2QMXZouBHO1hdqlPt4UfLyusLPs5T3SLRlxOxjrhyqR025KspqBajspU4FbsdxAE3jJ/zM8qAlsk/jjZyhmetEJ9I+m4qvRkuPwy5rqkqfWH4bpeG8uPRE2gwWXMN0B8XY/w==
Question
iIFEskHtSQd1cKGqxhbw/cG1kM6abEXe86BZDlGzzr8qg6vw1/az4DPI/qu1tfCbx/Bc9FqAfbQ3lwsnwK4ho0c+tj6YuUZkzMR7H8KTWbZQbnEIJg4TyNnWDCOJNsQLlxiG/srMPiFJsrvtOCZLH7h+pkx1TZEmuYIRxFMPJRYEHQFl362T9NzyulzajExtvRO4jeB99hjz0rqGJzH/T8YAsAAt/6HBYaxSAMGfxbKDgt16B6mAVOFl1xXkEw+maLkC0e6Cx6cHPReCTm/6q4O8dd5pbEepRZgO45yl4raNtXY50DHyh1t6FH5ib6HasU5LnQ2XmNWvH3V9WjbQSRVm91Z5LyRY3vgccl1XWQI1g/trxgzJL1n6gx1y3E75Nm0htRcj4q3xvjp6s+Dv5ogu2M0LBCiCSUDIqzC+xUcniRZLqAPkla7ZPiRPI69K0fZ2bIl7VAZndObDN7DZgy3U3tIJE3TTrMm3JTAZl5j2eIHsXkB5BLWDmYPN04wikIa8bqK0BTqWaY/sls4JfIpF3Vwh7oP8eN4RfpvF7o76JrcpGNl7JwCIuWJquB9Wpwk/e2wsEGKva14O6PlgcdlzK1zEvFQoQpNwjZT6ZcAaXPYekpFt58TVwMfASJ356xXr/KWrNHiJO3QWv9yeGHTn+fs3SHnHEAylWYPHz/EJH1uxM3YCoKwrFcPJWZoDoQAx50+Yc42kNZ74PcPS+WByVaQpCRHRBbAmi1eXOZ49ycHLigl7tJ/8QAtSluPmQQ72ppFj0OBXyR6PsABKqoxGnd10bwB+vi7H8k/oMnmNgFNsmy26Si28qkibkHZf/g9IhgT0fsXDZOU03K8hc6/Z/wf897XbXGA2+MX6KRDxCYEpwHS4QlsD5kDPiBS1g1nNhbClvnybUQFg9vONuoE8YylKO8zmH4FQQtmHPbwU/7i0SBxjzrWCrPml1iznf9Twhu2bT7q28ikxtp6FHIBrJgJsoso3jYbFSG/8OLyXoEkTXRXbjAq6WtcTL0W9cqSstOcbIO79sLBhJMMnkX6Nl2uik9AwPchDZI2mikrNjz4K0JYyDrLBidPGFCKu9uISSj9C5AIATHNqA7ZKb81g33cmeZZ7dWHOTQJqW6kX4uhP4VPyR/M/dLcFVUnG2ekW2G0GcmW+GdGzgC0L0PoQJsvx0Gz4BZr1wE5xSxZGFYw6DH2k4mqATcPKKDkwxWtgN1q47oVOGTiJJWjfwYKxKo/vvvdmwC+08KeezUoMC4Ue5c8QeHVyoEX/8kOKonyAMJjdoMdRLXDcxsjW4Uz9xIUhdafEUsb2y6uj3X5vo6FOdjmIV+X889MhZbuN6P+WbVeIPRTUtPUeOP4FbASHQB1ouoGBd9Gvnz6wNB+T6NCGwhNR4qFGJSqTErRjJvAPnVWvh51UnBhciPvHXB0kJ2KfIDZIa6gn4llAY2s5laY6Yfrw/TwArjRqSSaBQvgYg/JUi2VkXo8askuGJEZLMvYOu0K0Z8SFHawSpxBJ3bv4Lkxf2Rs0A5gN8c/ygIMf0GaCAdEMsTf16hO2OIrwvRlApn9dOAZ/dQtGEd+oN23VqT0/MK2SoOUp3nlhkO+k8IRQltF3yxzpLYGZ7BBjx9jJbpoFVS56toLZuG/i4UR1Gs8AC/g6nd8FvgXbOasLgxNBkWg/IG0pDendz2RjPmWpzLb0px3tTQdxmuAXAHihOP8HU8sEf4ekD7F6CfufcnNR6jbE5aOiPd3tslgINu4rySM6XTEpxjlvh+r8sSzifXpUIUxKT74QvK7uHqIyhUZTiZIqiv79OjCevaBsQFH+xzMx8uG/kaNPFs6QzAp84QrglOXC6DJ1wXtHljO103JnsbpOqUGg6OQvY+z+sEHRwpLRO/yhQN0OKRbP+hwnFlyMEpuTWFopHKrlTIxvAm1XIMwz+5r85IXq4/g3wtNSfchXgVt5djntSWKfwrUavn4eL//s1Ncp9uIiG7HoBTSeRt9A+K0IcV5OjuO6g4PTt0nB3JgtCvO0aimEurPvY3uoqPf5y/Y2KcwqBazsZOUUUB/Pql7uTpJ8xi4lIe7NmWP0moJm8C+3fx4wq6Sdf+ca7ThWBw46nyK2zejfTcx0kx1s1fh193mKUfaP3OLWIsdb/PgN71jokJu6Y31gYkax0DdVq59qQDW+uDIYbllRGiX/bfT/SkY/jApgRQgBvCA+TPCq7FT+Aek7ATzGmr1wPZxjCHe6wmWSi1FKzirKQoo0+ZN6ZFZXxq8Zqz5FEd2GFrtPAc5Dt/9VbpEz9vGjZVNKeEzFOc/Z5+U+/nNSMKhAIo23788yuacv7AphR97VVtpnOd41duET0zoASU0Opl/7nLlCbzQtqBXKXn0VcQfCD0C/F/nhJwPzj5fGZVE80lC00nTuWXcm5+RuroSmem6v/n86vzDngBg8XUztkRu8ZJLR7/4BvJPW8ID4pUAd47KYjSf7EDLMTcmBuPcT/22XqXrB2onakRxRaCv6VTXyLoALp4h1n2o96VRnTDwzGCre/mrSZrE7CvwzsrRisDG1jShd/DFQZuST4XXanRAGC13/VKndMLwFT75ZZC79+F4zVJrpGUmMjxR4SFmoWPkm2qe8iTr+m6ZaStMBWMDZ7wV9yum1UCKQqw8gRejhtsEa3vD0OJrq3V1wxW+T4xwm9fInUKQwCN08LaO9ognycEkzoAEd9eOdHE9JBSGikfmB+FU7GFCGmO0I3QHc/i+cx0ja9qU0WLn/e8zoHAV+6h357BY9m2h0P511zoSUA0PIBs9TvuNHHSwaGKshBGozwKswxovcJLwJdAk1fOLYxPvl9PzhDFl/9dYC9EwKZjt+vnTzpNA41EJu1NOv0T6A0BZyZMo0ITJWXkoBsIo8o3lMSHFgRk3c4y4Qcpx1DIYW+xftGyO5C2NcMiMx+Z7BOQkBrhI/3fa0vJyN9C6BiBJE/0Fh9AcVxGQt3NLZSS81nv2dHHIGDUcBHNDab/cHq/RV40wLRrA6XBYP0h1mtXJqGfm861aZHR/S3wK8vF9TC+Hw+CUJqnGvOuEN2VuvZCPsPalIWE0g/0D8s8zS1FIjEb8FEzEE2ho5QRnOozhvIp1FvJIkL1B3b3vkRPLUIuyGBlqYWT4LrYS8c1JzXG1Cok4Li605g8bVrdKmq/W8PgPITQhbpn9B7T5QdQJHF7G6Biqme8fg8IrXNQDkN4NyTVqmzkAL57icRFw0//M38L57pRIVJWWuC7OK2unTARl2Cz9sC7LDMGVniJfdW4q8evliEy9abIchohJbmkws84d4VGxC3wJwEQgPpDpnyq1neN1EdUKnQZmdX9prCLxWJrG42N3i4Y3zHJ/m0aY6wq0uwUMxpj0VSd9tx5CsEK4QfdR0bnRywZSYgrepftNjApbsqk4W1rTN1958RG2LT/6Ufn/itbF5+t1SYkZEH40K/Mi2ewd5L8N7t4JHpRjJt4yywwEvWhyOBQvuP5405j3glVMaYGmB6CZE0m46RZ8Wm65VF3E470HvdVRg2v26m+Z7i2DSigVfg8UOOE4kMk06/VxvW2mH2X9r5NgcYxLC6km9K95NDmojHIooSRFunbElN8tqp/7eifvkE3ZC9xattFeVJWwOFU0rikc9lcqIWt7MH/5K/R6joaLf0i3erylVoP6h41N4kz1LrwHk9JWJTnHqjmBpaheQyRuIERrv1zcxy/2BCoD+jUrhLsnPEPSu1NZujF0izFjZMgKfaMMpfJj8R7KPTse0eRolhbv0n81Pq519d40CdELYkk56ZRjSe/EoHSjtiCxOHbz8pRlmLkGhACyy/rcOXSmT+4laC2ICr7TM8RFd7osqg9vBdSIqjcVaG/e/JBhH7jn6imRIcG8xty7l3bkb0mTqG80f7ae5
Question
4dJbznVmJV6McULBzhZwLKQSprkQcwYsRmDtUQvkVgkhYL2IoPuyxcW7RvEFy86DHhafuUsHU4ykFc6QCIYmVH8dBLiJuITF0bSw7EDR/IT8U9/qiaq67BgH70O0vE4M81RlEqKhxkEC7IZqYCgwsdmXGBIZtxw/EqGHSbJBU78PxLd5jyrQGJADoIePi8kNNiAnZIj5kG4puLIYOFMfWB0N8UXJyPC1fBHxpD3ABZE4uOGyHOr9QMqKIaj9mjGaqthW9snqwEvKjmomj7UMi93hYfZClBf/WI31UzSAv39sUiVdg2SMkNn42JfblDMTXE+Y9QXUFi0Fm5nRCx1xLXDdHHvKEMrefR2+7yBVXXCLJjZhEeuadaDPIfx+8eLfUW8wsz/zKFEw+2lAbKkq+/ywquZPLOjxWYOoNHf6TNt5SNQhqj+yRgZUjdb93rAcgk5J/auBI/4cuBDtirINms5fVjCxNbsS11PEFbWT46rNpkBHNhK+OhuKInrar0Ilqi3HgPcsi911e08BeSSNyfALZT99sxXcXc1/kBbGMKJFeKWMvV8UMw4cVjWkZUczAqFxVlrOCvrmEDYl9wR+6PBh1WKoDimpeLcuIvMrrtE3btr/vnb9OyvU4eoinNw7/f1+NLFXb2onEu5dUFdxOJqQHcuyc/wN8+Y+XVN565pqhGUwqo5b+PE8eovxtrfrYFnJdqIAzBhCw7X3FYgUrNfIaIUD4frxiyLucm2T34JC12MHNlOIZ9qDxOmIzEKvKD+iOajHZ5MbI5jThsdob5SPEi92Kq75Hpc/R6X2/aFqp/i/uxOb/5TSWJOWS29xNNUW7+HDePhvby1H+tg0Xiy4BJe5NHqydRBS9X8+ZWx5iKNyFwOVpoHTF2KyMztBeTmHEJ72q1B6sDuBkRDq/XVxfxDd5Wd4mty23AZxSWXsr1ZZXMeDKEEoyDDBJnm5Brp76lRiyP2EH5cCQ5MU2weJEenJC2XGNJ7dpC5j1ejgcrg29PjHvBAHJqh+kMxPPbSCFrzaxLMLO/VGLN0c5VxQz+SsboItOoaV/l2JV8BFnXMD8Se5BZhnNrjFtTAlehUy1jJuICoAKIyB0KIXSLDMWbKxaSzHCC1n4U9JPVNAby61eETf4qouZUU=
Step 4
Question
What happens to the interest rate in the market for loanable funds if there is a business downturn and general pessimism about the future?
hXN6ogCb7m7Pts7L1MOOng8QD4qSTyjZPZAv2XMvhPZdihbksEEjPGGRX1N9gThA6vti1E0VU6V5BYjVUenL6Tz1LvdRVACV3bP/WKSuYRtmqyavn6WouT4o8Cm8l5RNj0Hi5vRslhx2Dj/Mrr/NcrkrBQVQ/6UqwNmB5GFmLWb0D7aTCwNJTVYFCJVpg4Pw/sn7bz1KqNS/txMQCF6PylWl7Q3JYWcvY0WSOBYWt3XKKb0DI8CUMfVrw71aglot+9R12t+t+s6KwXHyNIVGRRBpAFe2ul9HCQnBGk98NdDqml0qBqFDIPcWkfCn6hhPXXdsG4V5sgFDvGetZJh04zrUbqCyxqwi4e4NjBCyb+uasJ/ma9YsyVpzgJMT+yuPmpTENSnn9ap3nnLlGTaVp5USzml8845USSTJLz6ItwDg9gPvgv6TaWj3La2/Bigm/IMgIXbe5REfFtEmjSuMmpnsLU76CXvfoexSjKIA390xxJjsjZgDt/wJYuQ1bCV25usk6KmYM1+0TBvTCmaBlOtSD9k5Vp2uqeKxqiHyqnHgIHDsCS3JpLqxMtXuWlclW++xjlwc2XZdvAKM15gLe/kts+GSse+rctLpM9b4vwsQ+glPbm+Seewt6EUfMRGSzOc1IplLMIw1sdu8JzhfRtw37mYfltcQLxFjD54PPqZvPP0bUthzOZB96McOBo6d4ZI6/uG8SvVWYjX2Fqq8yWIrleKpir1OWQCtNKPFX5wFl7CcxKYVQyV67KZThOTWvsR3yDBDDesWyuVRJC99TLrmm/pwRVo8jfczn/B8GBF5EsZrygT0sFz5z6GLPA/hIR+Pab2PfowmVkLgGH/ZK0b2Z84x0Mr5cE9wm2UjqwaD8lhDRL4BWIbDJxFnepksohPc6syfN/iGh4QWB2NbGcX0YijwyG3QgaJ1dqmMbS+n0LFF5uKVxwsRE+lKEabHuZuWxEoMqlmLHT2jLRmPLr9t4u30zo8uEL6gNYK/tnZA79bFnumNALL04oDvU40Yv6go+ZujN1XzIVUjA7L6Hr852v+mkNAe/5M+nHcxuaTfEwTkdEsyc4//xeG/iaRp4g2agS0L4ByttUBP6MoPZ/IHwYmDIThBEa3GV6QzDVp2gQ56Oak9QQhMUZdyJygsURdd/KCVZySqnD/pTYY/jaADVsfWpkso3Ex19BePS3qsa0E10xjkMv3hZFhw+zpemoCkIJPrjzT6ZWt3Tg9U91m38K3CnRSNt6Wf/elc9uD8xWV2mi2lR5huLpxRkOsRsl4vwcLENL0Z/H1ay9pTJySnPATwkVmhSsL1kJtUOyPdPOmfTHwvYQ7sFEdCVTQbCdXui7n4VvP7ABvvClSCZI+Db0hqX4oeNRB+yefIGOP4Yqo1WdmQ2ns3oPd7T196g0u2Zf3pYNsJMPsAmGLl1YbLiXBnjtcSkadTOKPwZ/VjcYqlpauxPC3wG7I5qDnpLaObrZMEkA9eFE8DYJKfDdHSIEmUOfoDhk9WYdoa8eEyACAkM5PzhW9fRvGzh1RjQKg3aGbcV4NyM8SNsy6IGF8wftqzmcjxwG/4BZul0PN6RAY/8YJGz+A5+msEBE1YPPfZeyigoQ8kVtaRYpbozQ9g+iN/dtwMzIHMAwT2K8Ycs7CDYpNgoMtl7JbZYLVCiIoZK7m0PMEeEDvPtBKh9voSW4s0QOzqjK38on7hDRHWoDYjUkEFkMZRa7LNF8WxcTTrvICt2Jj3cWBXs+Nf0YbBPZYAP676727Kt5kw1zHa0MCW4itAQAp8K9MFO7R23ehEoUgs6OBMxDTXT4j8hsDKJp1RNCb6w++6w6MEPErtfE2ykX09oJwPxd2+c3THwlOuqfIjRdobYHXvMvGqg1GpIi6wD/e7m6NnSdXPFtc6ehmTpeHw6WN2d7n0fI3GNwcJI/bJcnL5K6Ti5BnHJaqEPj1Ee1OjFxM8y3XOVs/JQEPVVd7zz5unU/47uyJNm031cWU0iAZQq8vSHfIQlC2rat5Wl12LWYnMFWyJwSfdhiTtyZRLIxMlsIOyuhoZK7Jicbn/SV69uLe9/An0GaHOL/jjDZDTdeImefeXdhqZOcSdqe8WZyAogpiTJFLtLJYE3O4WyPEOadB8gKDBsD0GW3VKNZhzK/cIpZpTUK0dU6k3SH3UJ50wDbkptFVZ51tctALOp4ztz+Zbn8M/O4UtX4jU8tz5q6u4/9ZKwLwcvpYU7xxKyF5dVnYEYAewTt00KixyCIZTmeZ/6ndzW7d+z3r5b560ARcdSvY1IlsEiwHlVl+Grei+qWcBaw0FRTEwCGEzQcZi/rU9Jy0HHYm5GzgyUOnHpk9ZSN6WxX+vVBfoN3e+62zcdth3ECVoyQUP5wE3HF7ZO/Ui9Ndc6W/bMRPAv+Qq8OVydJ5fjbaq89zqnkB2LLahlfvOouPNX2jKbd5S3ofTCzovYelfYyOYXdF4L5qPa4OLiuwWddah1m5ByWrZVWdKPHY0VRXrH3ESBaMyME/82ZQxapU8m29rRqQDrNyguN6bjd8/3D5TZZqK4QPy4yRCkhi3bkJaffqrZRpRZlU1gKFW+NVJyS9ccFbmPcA8/TXqXwkgy467IFfzzNNwGVWiJizaHbVl+xmcKiAUU3zghNtd0fnAQC3bazVEOFGmM7m05YmTRKn2yRZPSI00/wsA1y4hKIv0a+TRYhH6vbdMHasxVrFEGpWecPZ6zVTQ69NLIZOlCTfh/noIhY0UuqVz8ChYTZ9kXdSpozyASBIAExMxRd0OYzfl11ozS2cPgJztB8GhKDs7cEeNTDua4DPQr7xjFqcbLgixFutI3cRk0u6uM4KyIbGRk6qYZf00czMQMcXjxvJYfCLqs6YEpfxAE1/pSbI119C4ioAs0QfF74oyG7QN1R0jqwqjTrQDjjQXBF4NsCO+m3x4rO6UEe2q1WJBuIeMjXuFk6MP6h1mD2q3sXfGPrzmXyBYuSwG1lWRgbAS6OG+P/4EUbULoe1tfOvOKU4N1ZTCzN0HARccyxBy3/UwfFRjQRnO0JcGMtJqO1bqdfYdPkVOIGfklFGQ3Gh5JyFuZ5vMKwqAGt8PzI7wTCilV6Xv+AvvGzs2RDZZeaJve5Yhd2H25WHzG1HpAj1vJ7x8N0f3Gy3mm1XIuE+rsgIazchADX2Piw3+3Mp/2uTflP7XkrtEetxv0jC4OXXUr61woz4zxDCGyFEsyeQNguCrc9KD25mQsU78zLyOjLWcsmg9gMvIRCAmoz9bskvqn0qbOHTp2IVuglOixwBoywtEPHvKdfjvR26vVLGjOYlqt42b3XhNM1E+xzc10qEtalfupOX3+K1CUcIe5dMYFDjcpAFv7s/XTJHAx0o7gn7UlwgkrOYLq05l5ivHfKUNDEXNTSB8786BjiDabUh77KEsx3TSS2C738mJk6MV9jbwnq/B97pSO7G592fSWTqAQvl0Q2m5NUuAW6oeJVb5sCc1207kCIorWcnGkpSC7MYS22ayU1RIywweLP/icsioUzttlBzOOoDcvA0a7njpFYjoNY8qacRrg1DVTkawtj4SXdb7JumTe/zTSHUTe65ILTrPafhbz4mkGPQTmTT9ziY2rBTtCyRK0y47BMDwq0oowv7yA9VtIrHfNgH3Q2mM1TSeYJlXBwNTdP43WLB53aqRHcrp8/PwsJv7
Question
74eT0MeQOHFcy7Jv9oRglptRV3WPaJVmSP/rNaBxlXFJ/sDvv0LAKrwYhvSlFQR3nGKswHRaKEVHhEpGp7I1oNoavWdbtXO8+z6iYwnQNGkV7TYsodLBiISgyQ8EboWYQqpl4elUp93MKvBvdC6vXs+XxEq1z7cNNcCiigAS7aUxnY9wO+gtyOPmotCs2BJiUNM2BzqzRq+Pc9S/JL5guFdQHrIphpekrYIMm23D1tX9eWaRqo9dkuePaYAb8lIPCXjsG4AJ4rnPNxiM+QRGrs1fPZ+LVn9m53GBzSnAt1HLKIQHEaErfVdH/5qq2ozAlZC7H8kNixAwhg2isyXMuCDJ2y6KwcJhfBvhUsWQRTeETxAgto9Jz1juRmhnTRbnxnhtBL1/9YoHas7RQJJqfOUDdl5X9i6EzlIgDCaG2SW54FsXCKIACCaUP6e4OFzW25XQUJr+uJSQgBMUiFisPMUD3a2DQasQOPD5jZkuoY/9G2ISn9f9YB0G10XZEVvsJuVxoTqZV2BwZdbNno/J2gDKrdmPu7kKTRJ+2HsYs3ipvPovou7z400vVzw6qWwuHHHbc8vwDheF9ks6gPSD6Aj75QINsaoOiC+Yxv6IU6+Agi8/eMrJ8c4aS5Rm4mpQxRwpA/jk0f+vK/K3ZFstTPcxI68xFkGWXxeWEu1HvWOkgXE/52iF0MVOcC/nCVGYtdhG+HVgbqAVTa59jzs+4TJb2IRlvs4gN0IZMC/3qafSMQH0sL7xrOrCvYd0RgWcBZ0nVWkHDshFzBr+xGKd9AhRHvk5gS6NK4MEJpc0J4TsmgnKaZdqtn/nurJU5I95i6MMStecYr5jzy0o7RCf8D524kNoq+mJ6AU7H0qx8U8B7q8QyNjj5Oo2Ekvt46/D6xPCiyuOuYkjWmmwxnct7d9sN6a3cvE5Pe+jk4gyq2vjZk2OggEEr4jVHnPQKMHRD5dpeDSy62qhDYjRgnU8p5hTELrZDj93CmPXdJ0QBYLsSL7GJu02ivCh4SmZkHLw3moXWWDe8FRygzzFEYV362NLVNIPTrie1Yv7xKyzmBla3QEcMJjRDujbKICSEfcwlz9x57WoUNlj+JFuvXnODKgVNt8/m8buG5znzj0pYsfqy3WncbvrI1yc7SAyO1JzWsRWxD+/I4cTBBtk+WfctZpGJXYv7j3kyYaCzl4Wtb5b2GZCAMdOIKufmWQhgS/Nv6saqNvx/fgTu3gTe4HJLW5AGTVjYadVAL5OaWp4ZmvaxAIV1QsckehigeZTv+lvxbeEnS00HpkjpmmKowVjCJY2qJjawHaM22g2L6pqYHTjpomFLupfhrYN4Sfo5Hq0qRZl7h58gjSezYEsh2PeB7+g+xpKkeH7kJG2QCxFwhryNy89eebaleLgUr/MKgcnaJm5+4/mQTh+GUkvhdnDsFQ3K9OuTBgEAXXeOz9kgzOUrZEcGNU0VoH3RT2QyvnYtz5KRqY/jNmFuqkkt+XXN01lMlEQKVlQd5c1vB8HgX2y5mMfekiemb61L1jVLjKzfPilc7cji8a9b5r/KVKbe4sod8S5S6bCelk4PDbAXF8jdM/KaLmHRi6XA5apkkPzMZ1/5+Lh7idd6uwP0s24RwdWxodf9Wib//JxOa072IJyRJ4YbI4cT76s8Ulko6VkhvKvoLV1jrehv3qSRjiLsJ5X+1EQuGlnelbWo+GJ2oAoGu56xsRfVb/pGnaYo2pQuqnC3sCHIGUvVA3VDz//O9dQb3TmPaR+Xg06bboiqHaDdt6Bqx9I0nTPh0u42aWH7geAtBW/rwcxshIM0ygDLrMb60/i5g2eP8vYpvRE4tdPitctg3q/vKZwxoYBqCcNAHbMi7rijvwMiQpWe54qp/QRiCWQ4LCe5DxFYhI9vwE763I9VGcGYsJZ4pWd5RFD7voaAHuYr5M4bEjR+ue7Q9VM+3+3gzoGC6e1apy5EYsNCvGIY24g/bGKYCr8QnnTWzr0mpnY7sBTfl4q0XKeNrRVJ3h5H8yZs8QXXGWPbOegZtk/6LHw25Lb9OWsGypErz5TkzdIQl03/inqQdKzn0ohLBAXMvUyEyzL/5C3oLUMi9Bmoi7MCt4yvFAEmPOCxJn4AzUE/jUN6zaUuJBk2BkkxpNjdxBXlaaHIRhHFywzvGwnd/IogKPtHRWHY0NUdLKwOXZQwHQeOCtWklEQMQtTgxBGQE9ABfbCKBsClzpAQgPU/vg6ADao2Jg61y3kBU+G40V5IdXajgxAGWWZ8HB4nz1aBIm3+NkMhsiqTqQRHnHM+U8WjnSr+oXJPmhDdOkAxs2zxWLWxsNVHBgjre5ITSV66GsRJD0BdmcX8ohmm41bv0rAHgzhChHXiK7NgdndPZ2kuW4JznTimZ+U5KTWpu5uRsYeh+TFOzS32JyFitxol48cszwGYPWADXS4C5hxuQ54ZWbEiFz5fYW8a3t9dG+ZVgLFDwvCQjK6eWMNlb1qfBHGTmnsFYnjwqqTc1jLteYR1oz5U6YcihfugiRYqdU7Rd0eVBcUN6fXJJvrd1KDx6+nArQLguGUwIAChDuXKTtHGR6HLAfzNEhfIxABSGuZH0r/t9Ygf2fvCxFnnJ5E98I0prE4dVgcZqUNCGF1KEGAbp5pVbEsc1++mbOTTw5NAv5x2A3oBPcJSGF2GNiX6HnWMiO507R4jn6C2xMib05RRLGzH1LKwwdij8BuKaiC5R5SGLiVXVvsLToRbDGpNIlT0KkH0Db7ij1hzYCPJhr/fXaMyIgdtpiGwjVK5w88cV75Nt6Yko3CGrY4wg2XLfNr9KS+o9lkc70bPn/Y4R/D0BRhXSwz1pBNummeX0GG6YCbqvKeLPWBObvayWLz/G0/I0R7vhzuOZsh+xIg3M847NyYwka9k8Tq/LMBkn3T9NySaVYncXdQdaVPcIOYb2vctkx3rbBFUgs6IbB/mV5WLIATLFgnuYIB7/vQ31pNRNk8dk2tR5dER60LVpeHIT1a2GWKxNWzkmZfXajP+IIVOg2wvBdzvTb2Rw6PBOcs6naQp9t3muPkapw35dyk3ubrEpQgCEbNH52AfWn+QBFCuihUeYksy1Bvn4GMwh/BJc5cTpa4y4VUSDEyIKRWWIX8e1zaF/LspNCtB3wEqp5iHZugtMg2UVYvIYsTkuv/OKg/BmbXxNaWr3lc2769DbnAKqAnKESbvO8QfSQ4qI0tfOFDVCOg2Bk1IeQLyXvoLiMDJSJDIhvhlO2nHzX0Td/LDTESo+lHz5Qv6wQcWPDrVzydtR+PUFmiDPC0281ZDUFYlBbP7d/nu3lZZJHs5u8gHtUEcygVDse6861pj01QVYydBoZ8lNZ0pZ/JYRUnNlU66AcnoNbUiMaVKT+p/IojuguldlJx3w5uLC0RaiVxZP0OlL3XLJFImr6aMsrskTEQNkSh5Ny3W6N7xQpPmTtk7l/v3H+Ie2R3iHyPFY84mVlalA1XpsFkQ6Ejc4mraAaDeGRK0I8SGtWz9veM5qjBPmHrpFCIh98gA5QIj3fpZ7Gjzg7uuyXts1ZUcfAf+EICgYAbs8xy3SRtub4Kc/Rbi0kyzrlwmQnIMjnUkh490vjjZxISzGLGSrfwNue3q7rlVZAqjQNf5tE1mDLT
Question
d/U2Utx/jIEWh90EcrDaBJsBQVJZreReAi12is9MZv1gNrWNKuHW/fkjK38+BEvGbuVCZ6VMZNh8QhtjtOJwX474M9UPeImB3U1zNwiWdl7iOXyO1o7UHr5tZ7pa1tIpqJZFOGwtFL1WJIpY7u7nx5puHTLVXKfIMsoqb07QNXY1FRUdYmOU3DD1Cl3HevN1Os1iNNTxTqnHoIl9CcTI7zx2tHUs+r40o9RFWtthbPGZDr11RZZoJ5g4Y86qfVj7d0yd/EwFsJ47oEjUAUWDy/tgUCQ6KrIlzwqCPh78NY8SB/ckrjSxMIqqF/EKBdhMnzIdy15x1ILVhwOwcYz3ag0FNvr6NCT86mk+0eIU/4ghXaElU2uKYxPT6EQtp23lwmpYwzZRv/QwUsO6H13UOO+KqawI2hdtpMOqgMop6WlilBuaxcuoDV+jB3eJuaLFq0ZG9kgKL5kd1ThAE++Dk2bH38RGaF/08YMyA19viKKr8lgtQSsnxKpXeyO3a0BWN9FiTpiv+2adejEbwbBkh8ulUwEhcC6kjMeFnrrW1uJmIPGXKELY+niw1PuFqlfO8lMVPe3OMMgDbsHo243eVUthpCIKBWiJxcV3TNvXRPDCzB/pV+JQG3aWzrsrSGB8Y+4c5Zxzh4s4IWZIclCj4ay8SZPqobj2b9WaA8SV2e6g23litr4SAq42od+VR9zacF38uw6StK4mJ4U74cOhZOQCXSbkte5iMnFfny2XNpDSnEuS3L8i+BF7lUFig6USlQTQq8FXmBWiqjfDNGKBoTcKWlhhrGUVOm09gi6d7oDcNxpL3ugXj94bxR53LjazrDCtJCh3JhXmygG/Z5Jcma1ZglTDtyfXoc1ZrjIE57SzeVA9udB/R6lJrOwSICB7vEp46/CO7xXzcp/ukNf6SOpBg7waM6Hv7HOUKfxs2PrF2dkgRDg3gQqaduuTaZl4Z+97SbiggTuXVd3AEeTmhSDaQ9Dquv0LyRzMyZR4dOtTJsYBolPMBBw3wuSk5wx5wjrvlJEHbyoqQPsAb28AMTaz1cr4UhWrhBNbItlvnACbHtLRqNwmXoaoQaIYWSV1rm1uwNjP2nMEDcl7kfJQ5jcoIsgYktwDLSd3JgJdohT9VN834GBtCGUKJDIOoTiJnvnuWwXy69VGSXhrY3/OwA==