Chapter 1. Chapter 9(24)

Step 1

Work It Out
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

You are hired as an economic consultant to the countries of Albernia and Brittania. Each country’s current relationship between physical capital per worker and output per worker is given by the curve labeled “Productivity1” in the accompanying diagram. Albernia is at point A and Brittania is at point B.

The graph shows the Productivity curve that originates at the intersection of the horizontal and vertical axes. The horizontal axis is labeled ‘Physical capital per worker’. The vertical axis is labeled ‘Real GDP per worker’. There are two points, A and B, indicated on the productivity curve. Point A corresponds to a value of 10,000 dollars on the horizontal axis and 20,000 dollars on the vertical axis. Point B corresponds to a value of 30,000 dollars on the horizontal axis and 40,000 dollars on the vertical axis.
nZDel5CWxhlA/4LXMMeYLyFlpZgRg6DwuLcEgC4xnSXVMErEcL3qP+OHs0DgcvueFVp6BOPhT6krlYyHQI1R5Zw08kSNqbU6yc7VCWRv/5sp7eCYAXi6Qmqq3BQ6yhuTGX02MZvjsJ+E7gNnvum0Do9LQ7jNDbfkCAEylMl8P1pZ8wAY2sCcwybcpn/vyBiIw9Ze4CVlgmfBwygRuJ4GiMWkpkz2lNuslDnLJ5QNwTeHmpCMxiR+ryeeqqtDhbh6JGob+s4YqQfobYQdqq2C48nf8Cg+sE2qfhPOXRwADKJy2u0qwhnAzflqaVMSS+YLTmWbCKD3OPkU/35B6pZa9de0OMPM/ne7H3LjU7YCtFC7YppVCyIo4lYw/kma/EjmJ99AQw5q6567lGyxho8IlwyRmg8xbh0eP1+UBLcQASPzmrVXE4F3uv8fxFrQoGXi8J0+MimqvYgehYxhNR1zDe9X7UoVzoeaDAjHPeNK3XvXrXgOPwscDlmNxX+1V0IvK1F+Awv56sErH+iq86jzwIp1pxXVYQGsIcospEKALJWfGr1aF4vTar99eOtITtpPDgOyulfOl6v5xv8Un3SfYeuUMH+4D2r+knQPeqn82TYCPHCH3cUzPy5TDc+w0jkIH8RSUtmkTvSqHRQIA4eXD4ZhmxhbW7ifz3RdBbttbtr9hyyLtqpKDSrHGyWvs0HOPlJD5W4HQjTIlY+VLLObQjsHVC+/1E8IQ90JsR1dU98Z9ryNO8mVtzjDhhA2c/OyhO08Pf/DIhTGM6BuDbigo4bqjbdJwGLzVZDstMLlws3wK8Nt+uFccSHoMeUV+17lhi0xv+y/0XGCgh5ZQECmDA0JOmH1JRmHaZ2jAMxFm6sZjFmgzSYdr4DSS1BpauYbfqV5nKi5+yvpuoS3rEiOBY0QN7yNODiv0yqC85hMWDj3f3zMiKygVt+IDWpCphTmOb4hnOAeadVLWCnI3TGhbCJEZRuZyolFCboHnTBUUDahNpJzLC/tLO4r8NfAkccPOp1hZfa1OJUup1WCHQOGU+WcUtjQKXKFPIxcLFbUirxpWXQ/TnJN0ERu02jOp9F6spOVYK2laaK9AyPgLcWMcexQ6l8cb9179Hon0rtDZ3xydt4+3z/oEvDJRxdFggSA927azQsg70RUG8X7Qnyd4WGVmr5AQFX40uIaF88fh/8Fl8DlYecIVKYOtPEvFeOtIezXTAyAdAHo53u5ZcNzInbTavZbHq3uVKbCQEFnuwZhjvG3On9+7KSqeCTNjg+2ZQy/zvKmZ91enBRJiD6rJ3UFmX0FPJY+xkr/FyPy7+D3nAMhZflEtDuqwEscoKDiJO+uWDJJCYiELXn2qSDzwr3NZdYes3f1c6vyOfjRDOS1lRpaShPs04YOMWdz0Q/l6veaSvSXCyrjeWNOwyzNUsV23Ks8dg9l3RC/bG8v+7VXLejk9kA7sKaF1gj4KgPqo3hwBJsOXMzwHIBLyXQn2qipxuCFo+o8LCZ2MxqSBloYYHwd9Ivhn2Aq6tF4IEraY4rsLJN0OZHmGWKRo8Za4DL7o7GOoC4zfVx7Ba0rYrg8KQoKWM8B+ip+l158+8bxH0WuurExG5/GmC4EHuBOekcTADmjNKixM44IWOUmW1CTxJGXQV5DKEaBuqJW86ZmOmQsfnaWhLc/Vg8xXK/ddX15aiwQf3TgvwRZ0RzvNgw++5js2ChSP2WLokYGWWFN1cy7YUEDB1uRSuhhxyLfsd6OAUzbwLCIHMvVlS4fJz+HBXpsVO4vCel2YWaGEIAQ2YMzwJOsMytycxv++E1qb7hM0kDamu99Eb2BgOz7PV82QYghQ+n5nHZBwJIfqguF4aEU0hGfOj9t5yzMNehBdWY8AeQBWNpb2iQ57Q+c72AfaTOXJ4dtmtWWu99AhMS5jhQF8FjHTaiqHy17oLgZjIhRxsoA5ENPzw+BVtM8npqNvAE7EfU0aUMu9FG5pG2hzq+S9f7cx1wmfJj8uBijldHqN1xTJmzu6IXH0kXAsrJuwaOGNYbS62J/HiTIeALsbo/62Cb8IUEo+74uFTN1qxQqWBwec9Vj3PfPex2eIwJrhSrAv0kXLsByLTSEykwEyQSMw6fPwO7K4U8SL5UDvKp72Yyib8tuK6hMPFJtzxb7fDNQRprslpI0zj9lrKpG4y+ofucjumLrIFRM7WHEiwqNhyyH2cY3cIqQVGDEXLDAVFt8ytirohg9Xe7tdFYkknKKxGte5+bF3u3OBw2Py801i3FlCelgBuYRZJfi/frw72ILtgUMEBfDwMXyv9wg+6yhDh6rdChr7qlnLHSxMj2ifm61LQSIRzClqQaydNEYcvFR2AZuE46HGmuX55PV5++Fy7/eXKabEgejChFQXZvY7t65IiZYPx2E8TYv+M18OVpaU0BCbUaV/dBYsmNXl9ptl9tL2tIR8tKxRK77xx0awwyA5bae1UmZaHC48oloutqqxL9RnXYlpc7sWbrfIuqxTF0NRZeKRZfjLB4Ijz/YIf9z0tWkr2Ie8Wdyssbq9CF3WShzsWebAQu2Tn6MBOC8APMYokviuEesBGjSHVeVPx7PWQBQn4/vyTAaKHIzv3inRK6fz+CMGw371zBvZDlYfkNjh9Hum/mRP7adSDVtETKlDQCIU4ufqbyqD5wVMGfDFW+ncjEGla7ovRjsjfT/s+egDpD5lyCAHUxTrg4Sc2NteBqTiPKBh5PZKKdErizg2t2fM2aLwdvDnxBi4htT/ndZprvx/mvMGoi4IdlAtjtzGHt4cO6Ow7MDK7oUdg1w7pGDPpLMhvIH2PGPqV2mtRQck2wQYWy98PZlW8F6rZYz5Qand8y7G+x8bBAntOH9BJzj7gvCaA7bdXlxQXUuZwLQEo+IJj38mXeGoU/pwPCxuRyexlfgGArepZi4CJBB
0:49

Step 2

Question

+sMPvOZcgYkQ56bLiUphPEtG4K+/kJ/OIWs22g/iwFRXBmYIFiAsIT54ju5l64ggrkSF87G53wS4OZxcTohVAhhqb0SX2vyFkppXs9ioK9g2GjT+3U0sCipG3+24NJXT9RYtIwjmEkUW2UqWOgknR2iTHjqPRvFQem5rmhjjxoKLMNfJ8Qtc0BihPsSDudAD+kgCA0o+VTYtDhbUxzWdMjJzwrjL0gVeVnkjPjRAUW+AHQeArPE8r9GYj0JPksaDApemmGQ0FJu66B/6s+SeFA0hzK3v0p/y1LohY/Gt2zsnh9A77hZMNpKCdj5WeEfSvB+U8s0TZT2jVrv9UIlQJJMNLIxzeeq/ZhxnjbgK97aXNNyJuEDFV5MktKstwFieKottqAd4aUTinrUNOxfgr8OPzjvCJOBAPNnFuRWHxTJnsCJZ4c+bZMv+Bg8PWk0oyiNLd/oanio6AVHiRXIcOvsZCm8GUtRfbv+R6dfDg7+29k60reyMyGojC61tsCVqpJhebn99Pwmi0PohGYJcpOB7cyAZyeRpNlco/bgcEelUnVBxkLxGpFNzv7gT0Ov1DFzilaacAbUJ5960vyggqH8N8Hc6+P0B/Km9X/awGMIs5kG/d5z6g+SVOeBysjFxxWxnhSxKF2D72Qm+2qCF4Dwrtrq3uQiEPOHFBc6gIVLIE+ySlHtCjfFPXFVo9YTVzT6ZQ/b12ndqilIn76tr8y9b3oLqbtpCFgfrPFnxhnnrPSyrlJ1GshpaWAH9LCRqPADppajgEBioRfcVOv0AybJrlc7Cl66wO4IAC5QcZBss4vgO8JapVRfVo8iuLgQkiH+quhiTldDWU+GsvqvEqYu92WzY8pQi8LUCaP7mBX8N++1HXG/GFvwHHzpQt4lnwmkoMgmlgftqH/zaiJT2AnMa6yaub2p3g/1xAeNrS6UVsg4WdGYlz6XwBIiYdWyMdmN1c2CYNl9KjOmMK3ARw3hybrvWSN18XnQDZm5NEBbpR2goA3l7imASWQpvI9Tig2d01iU2DcWN2TYyhFE5vsYX0+QYijeRsQ6W7C6g/QK5xZOpCTAKruxzZSEMj8aukBSyj4M8y2Z89nSGHsUAAEBuQWwPjqaY4K7+6scO1swDo8X3SMyLcscuvZ4FzYSSxw18DSs6QJnBvVZ44D5+GmUs/UMTV8vEbhBM5ebK0eTUPRlNYFb2I/RIvvTk0nK/XRbkyz/hZ7lYqM1gifRrjCmy7T8o6j9M0i8UoWyp01d80YRbdfE7uSuRLlrJjkiWhQFOpzwHf5yaVa+rh3MVqpSpRRRR1thWgTPRpczvCW5JE6n7s5KqKlFkszrJQF16kKx8eIX0YbdrbfL54NGl7KNVlZH8NeShwtUbpngDfd9+41ZZJKnLP58XK1pkVl0dOEHNTvf8NIcPFUvoyt6HQfBF6yRq+fBQAHFWCkT/1GvaYCAQIv25MtFBODTOiMvJ+FJLoo4i+q5bQXedQDk03CtKLRLAQjtfdqZ3FP8SkJndqp3fJG4PpYvgKQqr3YGJ6rAOSwsAdR2fln6V05/6q3PCL1ArrwxgrVDzmpKICSpGAR5WZptxqRMuG+ALATqIpu6KdtGM7Ec3kZnbqxONa1aea01M/6M2hvZHdzhemUkvhJcW2THn5YZXfZADFkw5+j7G/z4zgxuhlfAgA0Dcu9DZy2h+kbCRUCFUyVqrq+tbrFQCSvFaDpRXNjOCAQLr0rCJ8aweEkXpqKtgOgcDBWVBR8usByA+01WGx42D3SqSAPlwioDS2ov4QpbwOnNdqX+5TbtZQYNYxTDJr46TDCo3fWBllfAdFIajkpoLJg6GFpEsw5DXCn1ectSdseU61BHN9sx0vhNlFPVa7dRrBQKwDEJwv1cjUH1mvZMrXo3LRaiwo2ma+JynYmJLEkN/ShNGeLtkxdqPG17sS5AOwCMPaa2HkhqWOOBZltD/25jPUEqRaEH3Nfek7e5eAt6gYvOgTUYo24tlMe3RAL7kDET4VkmoPgwxcLBD5APObSnE0PxtsVvSwnblqbldz2+HmC1CRlxYvPy/L2EWECvAK6wiZTnyMRCtrSMJzCMgjFcdWZ1Do6Jk9eMBV5b4e8vSgjIBul7SypxlGsNpb8od9vCmigauJks64bolx/aoCRqcBA4cv8dVgjSX3qjYu7wPDdQ9LhfiwWgpSCE1tUrzRTpSJVtDGjFvBSzqhR5fWPm5T9frprS80Hhy4yCF6LZMXuQ80VFJ976dy0pxXaA1pJDVsMaIi83Y/0zsWb1aWJ0wHvCSKFE2mEqs6dNq4WWTGcb3fjLsGxtsf7HyDZf9hS2K0GkV46WrOPOnECdD2IuqMId87fzON+PxAcw1c8/hrToFdOTy8fT6u8BNEdQ5pQlxz6+MbvX5asrbzwhb1tpCmBvOGK9mvTVQvEtKVRI8yIMPi1/3u9xKhAb2y/U0F93yMG1aM1IVvFnsqStIRucYkZimhzuEMoTi7JLFJh5AZhcTsOhmSzTjTkMZfKH4bu1IGNGPLh9D9KbwNNjz20p6xCRMbVrzEL252vLSl8MKeogRhT6BQ6rqv2tCkynBvzewpB4Ow0+9PlpJ+nybXAN7HBHqkytryl6TP7LEnWS+sXmU3DwHxNFgiYh8PHzuIzSzrQ1n6Jk/SIVloLxqfCyXT87G4N4hhGNUyRExJxizxrQPj2KmHUEJ1nlSy78HNKjuYwU8byKO1qwUDPnCrWMQa7xoHsbKee6kznsOS8EBpdG82sXJmdnR0obYZ6A0po8aswn8/iGng1bVTLgQg59m4Tr/MoeaHFtlyes+nSXOPLrRSl9AeqqbW1z3UZIhzUcOExmzbC2/x16lKiF5rrnnsQ3Z+bXix0OESMzQB65YkkdY+j+gnTVJyP9TOqFljg4dncyiB2Y3sL272m7QvoW+drtfaR7+aanPGZgY761JagIOIfc8s07BYah4efwND61XU3QNiBIr/PuAPtxRZL3uvTEXB48f8UG9fSi9LV0+TpI6zyQSOF411eAaosunQATbdz7nzAD2FfeA8ReuqUfCXoXdA99ei4wm5RDgZXYArEE818pIMTk4n8Tye1VIxcRt0ABoCWLFVX+i81m14p9bmvDIPQ3PAwRPEvrATIWylGqbplbh5xyiwxXZ2shdfEErGrBqYFnB9A4uwH53+JzN3nYwnJPJt2VCbhBpGDKFhqNQW7hkT6caJzEKYh9oAreccsqszKrkQW+fe/yhFXhBUdT0J5r18xNZDBx9F3SLwMvfv+9s2N+p2xFUQjenO+gVYoHzG6hxaiASBWrWPIvshN/6KH50Lp0OrI1RDIDnZrUiYT3JnR3mm41NtlbmQSuicM12f+X0Iq1nOkl3caXR3yWwGjCPUtgVCoNwT8Gcptm3fg9hz3NedND8JxUaXAQv4nE741agFjkxDHnVTTLJCPssf+akWxHWU/FG1j4xvFeEz+qem1SIl2otg5Qpl1P2PgTNfYuX1/BgKkoNxK5S4qji0tH00VFkpaz1+6cWJn4negOS2oQE773n7EtZ8tCbVRL6aonzIZcKOWOZJ4BCv5IWetBMsBTfP/cOVRMKvgDih3ef2Soe3tlysmtuQ47s4uCS79d+L99vq524VAMEsa6jqtl2Qg/lyUMQWchaqNEoSue96z72hRASxoJ1ipJojuERbaeh47ZRs8cANqrMm/I6OIcK6tly23RS72OHYarlFlNC5wW9sJeLRANRAF0gYG0=
0:37

Step 3

Question

HLELMCcJT8bzZViQn/HWmRZHcZJYzRsZmcALhiDZvM+GjiP4P6CVJJgeOMx988/Q1BdQnD/LZWIm6dHtqKpwbnkUOAA+wbFsDcMpdbxK54ydqWszzaMRGJjCPDlxZHYYhbEVfcyR39KigUk8e4YVp+rrBo1J4qXdW+54MldkvPbCdYpaTOPL6sZ8nSJls+/PqKrSxRx3uSR3CKAYiP6DTEABEYTwjF/3Je9nn1MPC6wpF1s+s9KkqIHmN5B0oFFD0abSNnfPz+XOISb5TM7yh6jHwqEgablFWUaOi95uuISUv6HI+4vaDXe3XQYpRuGrKzFHq8Xa8MIrJnVtBRe0Y7YAaomlyxMw2HCi3wj/IoGZ+9skdkXf0EzKyPy0EKdVgkTLpDoxEedmy27S5UpOQrFflQPStilDdUV/IWP2RHKwQsndqkYF4WLMZLl+51Iv8cR83Mc0lQLmhzsHCkHOSuCAIom8UXkwLckMBD3uQ1Ed481HBdd9SfQGpUXKcd9L5btWx3kwRqCxRTtCFjglUZu2DkrTcZ2tfQaKSmNgcFWgNVrOkjayvjkAwjgrhRy6cKNSt2luVvMJ7ZWAB87n19/6lLeZHXWFiXV5tIP9BUE3u0EpEPt6VaK7UHjxyWj6lv/fRmPEMFUZDjCiDmn5TidtDlrpcwgGhVDP3a/jKMZ5fXduj/rb+edBRApH4ein29aKBBNZ8LE0Xx3T+O0V6V9aAy4UE+SHfl+oBqD6/LzL2xjarVi5W01Bp+u+YDRpEIzpBQV+jjvRe436rOJlm+EbP1luPRKrzSCcVc/HPKQcNNCBUGF3bL9ta91CGh3enplbRbPXlk47qVz7MYbUSZR32jqgGSN3cxrujv2+6aVG1kbuDO3bgbmyGJ6CYY14HHwnDrnLy+fXWItJi7evCMUsuMfefKIMXSzrGcyY+GHtczRIJqie+nAqBjzlX8sUHYyi1KZEthY9dUrSTIJAWkTbpZCLIV5gAlvlFGaALDISuahKkTFKOPLxBpP4ANGDdxF40Z+i+G7jvOHKZxNHPz9WCzozf+BFsTNUEbq74Euley8TRj16T+Xi3InT3u7efLvTzv6SJah9mdjjAQoHuV3nqpM/Xe0h4/muz51UOBDnbu2gAWSLxQr5pEHBlU43bwuJa+WCLBaAkb28ux0mvSfrCb9kaVLXevFD6Uk8o8MoS53P8nL9vO9zS+Ql6e4zsckx/06NlrNb92EA/zzrJpc4fiWYnK+X+jt7azAOZajpAZc+7DfVQaS3BYqrboydzGHY6iESchg3GB+G7/piAfBJmJU1hqWbSxZ16/7Ll4ZqT7Z1uEXj2T9p9whqnNxUc58iEOz6ocGM6DODCfojQSmWhv1UqNAms1gZhvL3GOq9u1Aj+xuQhxWkbTTpL6P5+FzQY4X+X2DvhEl1HkyPwZKjl4WCKjFs2RSY8pBo4RMO8jOaVRob3q5nEKMbti2qP9nW//ood/6dJbVf8RNNSyX90soqQzgAGPjbiJSeKqpfAVVm9hpMjTWDsjesC8EWXFsFMXG3sRPphON2+EQnkLD5uBdeF59nM/J3h3S5f6/qNIQ+TN+FivleuY/Fsk3ZVwyap5Wl3SF4M3SixcNhmDLQKp51T0rkZuNpHVrHQJIy2ev3ROGHBjkTD/+vJfDhNjj+DT3NGxUN42r2t8MC7RLp+F8tAoREMfmOvKHDLLE+JMQWOiaUaV1bcD1pxNkPu2fIkKc1Cm1NnXz5MfD/PwR45kShKXSw/d5mNdjCIyWcC7isof2osXsonZcVfXojl0aO/K4jaTt8mjP6wu/19fXyMFo5WZqE/QcRpa0VTNGQkE1GuUfd+wB3m8vmEoE4ukyDryXB14PZfXCnRfRLp/tUnhnLU2b1e5gDlbkjRua3/Hv27h1VOeutlA+GwrT6/eB63BhMhN+++HGVqTQW4lu0ksuWqVk+QOKq1DcIHrB63dcyBuMrwQqi35N+EyEybbQCtxnqKgBTuzxZ/Bt86p52DrPABhk1zXI7XIMEwwgQrp7YM7xdSZOdJ3hogjPlgfNMH5b/WAIuofQmJtEGKvBlOuBOnvc+s/cOlBMtxHKw+VVgTjwO0SvKHvdjTXW19wjnbg8B2j1GyuH/YmelhLSY2hCew45WjQisKQ/iefOe7o+x/EkjJpZSFk17giWJ2S+bnFqzlqVJlmzPmMJhsnmdYCRyybguip/m/gpALOh0NvYL5FT5lwA9aNfb+n8s4ZIsaC3Pk+GaZaBHLeJuWH5DAaI4TZvwhzPAF42xBuwZKOyHAP/JEw4jGk1wJsZgpAgjFJHadzrjxTBZ+wHV1gwEL9fOGFpMPp1gTU8siypzNHbTf+CQhL1vk/weFThBVWJBKjm6WNMS+fOrCcHXzLo5RVBGwT7mGwvj0AMKh48ERq15xVLQGbm5sXY9OL9gBMMoFw+ysuis6ZI7CrI7AejSCs7I6H3mTo8bERcB0wg/j73pBzofgyyv/QqHQjOfTyoM602vQIUH2EOGZn8wbTaoOmYLku80DDnhhAZAU8vWQvXL9PfPOo/ba8Zi1qBV/kee3Y4tlslVg+f55PcY9cX44kER3PxMmfcOj7cnSN34v57lJyWTEw3wqo6djISR5mNjCOSQ3Y5RbYSLbq5VqpjrOP6QW6wItMhszWoaJNi2VtqeHMuPtFBLV8mIjt0b6poJkN+Sb/Biy6HrRUUJX2/zWUIhVi1j9ZQIMG2sXbYQet5rYEo30bAI8Dy9r+00+CXHQLaLeW0O0mzMs6yeva/PbdnMmwTNX4Y3Z70VqnmSqxx60ShL5wFgOvDhhK8CTRR8vAZ8atmyk6FqIr1PO/XfCefjdzysr49jo2FCFdTlVODVww8vV6GD7l16MvQpP2A0VJDnC+hTmeBb2UURS3Ehz7PKNAwQDoD+PWD/CkrFC2YwJM0U/Hd/WjomLfmPfVNJaMzU5jT3cM21WmLAxNwlU57P8Pu/NaVcW/xXBrxnfhejhTLAmNQqak7etiLhbOw/BWSBJV5oLVW6L1xq0XJ70VI4JVhhnczOlHD1f/0FvhThaVMb4DN5A7Rw5fLYLocQ4dwDs5N8/7qrUcxgPlSf7t+a+3t2oSP03t7jtQU6iKmjnGvKjaBPOHRvAzuYLRtVLuIFY0AlTp9T1JmAsVc7xPQ5FskDYbqU/vnaMo/O8C2UxQ+GiwcqcwfHsCYiAtstCiHPForwmRgfiN6ylCn1uhD9yXeRV9bzcxzaE/+3/WgSDlLfWZcPiXhlJrKnvGrNGfvFndO9PoVE1njLpzPnJc3PSrs24V2Xpr/o403DkFKvBtinO8yN0ahMJRBpS0iz5Ltj8tmPT6TyanesTx0lwKbHNiC+NEXcY52yq8Lc/otbswJvzeqw29KsNPb6aw+gA5hEKwKqB8tzzREqxky+f/XG9gCnUOSr3RGx6bT/IM8VhmfineP34zAG4mI9kGVs8tM+i+P3xyyzVxI6kpQBcta2F25krJAMcVtIKamW/vpsF0rNmyWQngFFMYAkrf4VsnrJZ5FPGZDfXNEOXzikN/cz6ILiVyoDanmV1+dGIy7TR/l1OEWV1Tx5xXKIHTlaCdUhDuOL+U/WeMrJiwi/MqBBsbdGCJLgwS03W1IaQ13P+yGEGkLonwRcf8q9nAjUDtT1KEKc3k+F6sCFRG2Qtn2RU0QH+pweBAx6xkVyH/014PBoO81wryR/zqwKVOIwWgn3/RTrwGeQZUJScsYt8VltCW0r5/ftakrKPFQQV8YmrYmpWRKistS2xVh8TupTOcrOw9s3chvbpup8I4+JQXinkYYfdner9k3VlNt6K22RrlArLGLwEg1O/r9xkOm+XYTEpCDA4GNOEt0HfaC4Vrnxzq63GwmFUXvdKXfmN7DmywWdjd6LmG8NJc+EFdmqqDpV0X+6NVjuEmRcEGu9fs65dkyV5yrOkDMHY+9whjSi19K4YL3L/TTRIGDAXGswNdzvBxe/Ek5nJ9xAqXjZjNVHy+OT1sadmk3c7xbPpUYl5oG/dCW8YICqh8URhxisEYI1v1fJSCzrX5Of4kiPlEubks/f81Y2/wptuGitw5uLvU4ff1SfwRZ7Pb/Lox7eXKrFKzy9/VG1BpqnGQ4iLIqwOQSBGE1M1WNlkzWJzEHcdx51nsJDtK0uqbwW740/aPLoBZOmmGBzLOQDzS6wAiYkfuG4+h/Liq1Oa/bB9c2B5ZSWghGXLjFYJ7kSeHYBz4/S5P26hyKxpLCGeLCPon+kOZdGTYF4QYlf3bp/V9E08F2IFnyVy5eJ9WKu7O3U5osOnB/SBc7YeX1KmMVH/LuCmTapiMZgTAQj7scXTxgBNNoSpFQiI2p0BffMU79pYDAc8BIATJZ0x5GHgFbuIIxq7ylL9d/PZGEB9GVsG51eHmsVUByvmqXRTkxCdLfxWuILWcMRa8JTUsmgrF9rnJQJNtDs5YJkCngZsIdWbgaGNiiWWp6gi6kVuM4dmH5KxQ+gIutjGPpYZCua1CHSAvT0y0rS5YjFSTnEvbEQcw97HBqpbgeuZaFz6RzS2ZvZV9pPU/d/XF/Kkibs0HPBVHjz1SQ1iIXU+nhzbkmRDQdx/bEnWxVk6qJ1Xu2QDxxTDqLChdp4AKfXlZ0smcoVsb4zTbY0P4MzV0gW30DWpLtIe1sruwF0v8H14k44/QPDtOllLN0WF0b/cLG82u3d+sEvu645T6AFV7IcojC3C4iJ3Ls9wE8y1wN8qrLcoSQDFyO6mlVsdlQsQj0xVg==
0:27