Tyrone is a utility maximizer. His income is $100, which he can spend on cafeteria meals and on notepads. Each meal costs $5, and each notepad costs $2. At these prices Tyrone chooses to buy 16 cafeteria meals and 10 notepads.
Placing notepads on the vertical axis and cafeteria meals on the horizontal axis calculate the vertical and horizontal intercepts and slope of the budget constraint.
The vertical intercept: fwIPnBkWdu4= notepads
The horizontal intercept: Tu9IG1n3UyE= meals
Slope: z7X+NE9yA3w=
Tyrone is a utility maximizer. His income is $100, which he can spend on cafeteria meals and on notepads. Each meal costs $5, and each notepad costs $2. At these prices Tyrone chooses to buy 16 cafeteria meals and 10 notepads.
The price of notepads falls to $1; the price of cafeteria meals remains the same. What are the new values for the vertical and horizontal intercepts and slope?
The vertical intercept: b0g0iQ1whKk=
The horizontal intercept: Tu9IG1n3UyE=
Slope: /euMlW48Z7w=
Tyrone is a utility maximizer. His income is $100, which he can spend on cafeteria meals and on notepads. Each meal costs $5, and each notepad costs $2. At these prices Tyrone chooses to buy 16 cafeteria meals and 10 notepads.
Lastly, Tyrone’s income falls to $90. What are the new values for the x and y intercepts? Assume the price of notepads remains $1 and cafeteria meals are $5.
The vertical intercept: 8P3aa4uLOo8= notepads
The horizontal intercept: XfbQwBcbq1Q= meals
Slope: DYU2tVvtzEQ=
Tyrone is a utility maximizer. His income is $100, which he can spend on cafeteria meals and on notepads. Each meal costs $5, and each notepad costs $2. At these prices Tyrone chooses to buy 16 cafeteria meals and 10 notepads.
ZgUlMfWFyPKygOXud/5aQ6VPd0nh8wLTy9JljOIziYj0C019VaEn8X1CbjUYambz0J17wGy6tV2WE4d2P3GqiLFz9JzQO3a1dSXz6t172jV9ueqp5A6n8aQc3Fze5hu993VS/DukVZLzGTSsRm2w8/bvE8D9yBmV7uJbQx9FiyvSRSvidBCvwjs/xLQgQ8RvItLzTcCBJ90+uGzN0xJcV2HFzvsMJQ1tiOCCPZYnqjAWjfYeT8HC7TQG6GCFlSlLwwIZOEQ6z6OL0eUlEhUs4Ya30i3bEYX/UFabt8mgSKIHCL4eQhNQCRxnEPI/Pvev5SkDqqLFHWpdTC0C7xh7+9VJgIPBt8mm0/AtnSsJWXjQyzhCOWjlnjYSEjurLTxCWuf67ChtXgOIbyrY8DjyNdtwhDbN2zg9fwBfR4JeekQH0VYbe7BUs5Duk18F6VQIXspqSOD8Py7gRLhsrPM2/3TW0suAbV1932PECt4SXuJHrSgaJh1Glcs47fFBJGXgwnTy3vRJOJr+njym/Ssay5EruYbupzx4G1KnN6SKtC0S6cvfoXlTJrhxFemEUeipd5/3/kIak0CiEj6BfxDerMEkKt0Q5J+JGuAwvqKrmRcr24NQniXruf/PEWSWHKinxTSCxTs7d8+Qqhw8ZhyTyynLZ5fUYeBtbf0Xpl07QjbHfZagoS9i02FfMk5LdIt9a0sDkBdNGA6CR1QK72CzZJfW3k/s9fYG8KzQx/m+UooIMcmh5314JORpwUAsNlFPyJo5JhbxYAHSrTpkXfOso7rhYP1718Qv7qHROePUn1VfS+RDkge94uAJbE9n83bCAk0LCRuNHQ+eqwgZR9Xtt60CD963v6tTPQXq6qJlH9U1/GglgHCRDeICoyi1WdrG/xpTISZibmf0fO+OtGz/Xo5pkGLYp5Ac5K2WLJiYZc5NbpjOIqaP13PecpjDaJB6zQV1A7hg6mtCqfvrMbjf1VetH+gUJ8G5cRJ2UTW+K4R4jPQnlcfR7CX/E+l/hKVBzC21BnOUOk8Y4Q3AQPuhB82Atld1tjf/KMWADrMyj73UeHYf5I5rV+spyJt5Soa9FO6YwzTACUCwS9XHqZVPwZpQOEQ3C7Ym9lszWFWd7U6J0OwTeyBacTOs2aHv9ERNF6/rjxfe02vpXyfWm4LeXeedtansOHIC4qai+NQi+rWjZ4JC6quAxLmRhBx6flWBGZXgcZhOaJPSQLtSnZi0QBcLG8/W1wUfkCWOCrx/jZd+8m4xE1nVILLhtWA2NFIEf8/umffIY6PvZTatOMGRqmpQDojcjybaaqzMbdtCxrPSyMlDrvVY9/kj1dtIBu0pavMSiW3mmJ1zWmoQ6oEJPpSkmPa7bLBJDt+fu47WnCHy2osa1xgLEujqzNtVdJuf2vceHD+YqE7FOGjnXS8wNcAQG7CMC/XNpFo7Ln+FNy2jkgVN8qmaLBKQGX3Rvzhg+4vVareEMQK0kLRL3350rbJr6BYXJQYMN3Yjfw9nlqUdBQQW5FseiuM7oVd2DSFT1b4EyDnIwMBQkTphh8tcLf2ituxHRoUsc1yXg74+nfwu3oFgQAydn8NmG6MgJzTZ/czQT+qVVHPdOL4eM6ROOAZnEOGJVGroKb4dkQq45xFu11pNFSKuAYrZ88WMmRPja6wy3Alfqa6rpe/plv47CtNKb1uX1mmaCK43fXriYQzmTTK2mvZV7iTDbzpZhMENiCRed1KSzeYPCY+2tfGM2UPtYVCLKvVRWZOy7XXPh4gg40Gh3fmJK7MQaf8xJF34O13tm2etY+tlq00UlEct4M2AMp00DNMh3rH5eb5iGOgNMVmTjMyB9yLT6ew6UxJJj/jG5yJGzHq+u/lEiyPVET1TIWk96TFrE3a605S5HdDdqf0kbd4BnLd+Ul2dgI0pGC2j1HJYcmgbA69FDcpossgIGp0PJ95/ED/7RzL8//lRsBL+ORFZVYpgUWiI0lTjfnB0TakO/qnx78jICMaxFowa+BtK7eNYO7NS3CgHdmxI84oQf2Zf/yGpUaAr/aqrSnJhO73jlceGgdWggr0XdYLMcgj1DvVHjBdDJrnzxrHhxHXwsClfgM9VGrsfOWUtSakpFSzYTfAOs8L3Mq8G/7PdVAulS/yuKy/DuvJYTK9kocmS7IpOH+Mxf2HWOa9rZjFALNziv6JFEzo2zRLYbZAy6uE9h+Rdtpzgh+Dp4h7nCk3SYjgZjo1pkBMi1PgweDWZwQqxq4+vKkDo+SNJvFdQHbtdHJGB7Bj+oy6YEsZ3jqv6MLVnhP/MSvdH6qD07LRmsp0k/NECdfqeDNWjGDtJdffyghk1/QXgFSf+O6H16K3SyCCKtD7qwVdCl9aD1LvJGIFdDi4vuOwlib4ynvuOPqdt+u8xxOKNRstopPO2Q7o885C6bXigPQIyN04/yCB6gEWENa3slTDpS+G31ZDuL1C7kWH56cp2aDEuJKiFM/mnHR1j7hmQCc7WIWcPmQlHxm6skIX2tlNvvh50EXagtRg8Fnc9O0MpSyWZJHQKgZxiqUewTutD0PdT5FGX3hRwwI4s4pAMIDTtjdKcjMxaNS9+ylwaXwwSFzkgAdpWYikr9jhJGScwaadObwb7IShWLRORlcqZiuq8u6UVTW/B2USFkzYEpbhNa3Vj8GBNviUcjJ2vw596WIpREf2JNzkd2uXDoD9uFIT7Cmx1Pp9VQMZF6xCjUy3ueKiWFLQMc2G574AXsQfEhOEWwVwIbQWnrL0XPPz4N/Tt/LbRllFth/QjVPl5+TPCwP1g8YeoH7pVQMwUiFXVPFB1lxqtEoiAW1AdvLs6KPM1tujq18fU54/NCepL9K6/bo78ND+zZsSeYpdLdauUIeAknH/gcj8J0wUbgq2zZATSvBlSgiVKwyMqsa0zgK0Ii5k1ncMA9XkP58qrJ9i20zaR/HxC7fBpOy+/iX0jjo9emrHciVqQgEDUPE4TX+OoGwH6mLph+jQq8QyBsYq83czzt99TCRnmMdy3FxUYWIwZTzivDhapmxTb01Ua8xdq9jeM939qwzr1YDQfz4Y3b9O4YwX2y/+kgWjakFHHICFBVnVEN1pndBBmhazYptnn4o0teZDqzeFtFYCfBRrMWoGJlLNht45E0jdd1C3E7nqFrOpJDUxSjjXMzNW1kI8SKxd7rzIDUunR8CBbqUY835fyN2hfI2cS83PTxodyVhOWRWl0EsiVBpuISjRwnG+zQ6rAd3rTnX2ik8WXpMYSU4bH8y76GQTnzA==