Chapter 1. Chapter 15

Step 1

Work It Out
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

You are hired as an economic consultant to the countries of Albernia and Brittania. Each country’s current relationship between physical capital per worker and output per worker is given by the curve labeled “Productivity1” in the accompanying diagram. Albernia is at point A and Brittania is at point B.

The graph shows the Productivity curve that originates at the intersection of the horizontal and vertical axes. The horizontal axis is labeled ‘Physical capital per worker’. The vertical axis is labeled ‘Real GDP per worker’. There are two points, A and B, indicated on the productivity curve. Point A corresponds to a value of 10,000 dollars on the horizontal axis and 20,000 dollars on the vertical axis. Point B corresponds to a value of 30,000 dollars on the horizontal axis and 40,000 dollars on the vertical axis.
nZDel5CWxhlA/4LXMMeYLyFlpZgRg6DwuLcEgC4xnSXVMErEcL3qP+OHs0DgcvueFVp6BOPhT6krlYyHQI1R5Zw08kSNqbU6yc7VCWRv/5sp7eCYAXi6Qmqq3BQ6yhuTGX02MZvjsJ+E7gNnvum0Do9LQ7jNDbfkCAEylMl8P1pZ8wAY2sCcwybcpn/vyBiIw9Ze4CVlgmfBwygRuJ4GiMWkpkz2lNuslDnLJ5QNwTeHmpCMxiR+ryeeqqtDhbh6JGob+s4YqQfobYQdqq2C48nf8Cg+sE2qfhPOXRwADKJy2u0qwhnAzflqaVMSS+YLTmWbCKD3OPkU/35B6pZa9de0OMPM/ne7H3LjU7YCtFC7YppVCyIo4lYw/kma/EjmJ99AQw5q6567lGyxho8IlwyRmg8xbh0eP1+UBLcQASPzmrVXE4F3uv8fxFrQoGXi8J0+MimqvYgehYxhNR1zDe9X7UoVzoeaDAjHPeNK3XvXrXgOPwscDlmNxX+1V0IvK1F+Awv56sErH+iq86jzwIp1pxXVYQGsIcospEKALJWfGr1aF4vTar99eOtITtpPDgOyulfOl6v5xv8Un3SfYeuUMH+4D2r+knQPeqn82TYCPHCH3cUzPy5TDc+w0jkIH8RSUtmkTvSqHRQIA4eXD4ZhmxhbW7ifz3RdBbttbtr9hyyLtqpKDSrHGyWvs0HOPlJD5W4HQjTIlY+VLLObQjsHVC+/1E8IQ90JsR1dU98Z9ryNO8mVtzjDhhA2c/OyhO08Pf/DIhTGM6BuDbigo4bqjbdJwGLzVZDstMLlws3wK8Nt+uFccSHoMeUV+17lhi0xv+y/0XGCgh5ZQECmDA0JOmH1JRmHaZ2jAMxFm6sZjFmgzSYdr4DSS1BpauYbfqV5nKi5+yvpuoS3rEiOBY0QN7yNODiv0yqC85hMWDj3f3zMiKygVt+IDWpCphTmOb4hnOAeadVLWCnI3TGhbCJEZRuZyolFCboHnTBUUDahNpJzLC/tLO4r8NfAkccPOp1hZfa1OJUup1WCHQOGU+WcUtjQKXKFPIxcLFbUirxpWXQ/TnJN0ERu02jOp9F6spOVYK2laaK9AyPgLcWMcexQ6l8cb9179Hon0rtDZ3xydt4+3z/oEvDJRxdFggSA927azQsg70RUG8X7Qnyd4WGVmr5AQFX40uIaF88fh/8Fl8DlYecIVKYOtPEvFeOtIezXTAyAdAHo53u5ZcNzInbTavZbHq3uVKbCQEFnuwZhjvG3On9+7KSqeCTNjg+2ZQy/zvKmZ91enBRJiD6rJ3UFmX0FPJY+xkr/FyPy7+D3nAMhZflEtDuqwEscoKDiJO+uWDJJCYiELXn2qSDzwr3NZdYes3f1c6vyOfjRDOS1lRpaShPs04YOMWdz0Q/l6veaSvSXCyrjeWNOwyzNUsV23Ks8dg9l3RC/bG8v+7VXLejk9kA7sKaF1gj4KgPqo3hwBJsOXMzwHIBLyXQn2qipxuCFo+o8LCZ2MxqSBloYYHwd9Ivhn2Aq6tF4IEraY4rsLJN0OZHmGWKRo8Za4DL7o7GOoC4zfVx7Ba0rYrg8KQoKWM8B+ip+l158+8bxH0WuurExG5/GmC4EHuBOekcTADmjNKixM44IWOUmW1CTxJGXQV5DKEaBuqJW86ZmOmQsfnaWhLc/Vg8xXK/ddX15aiwQf3TgvwRZ0RzvNgw++5js2ChSP2WLokYGWWFN1cy7YUEDB1uRSuhhxyLfsd6OAUzbwLCIHMvVlS4fJz+HBXpsVO4vCel2YWaGEIAQ2YMzwJOsMytycxv++E1qb7hM0kDamu99Eb2BgOz7PV82QYghQ+n5nHZBwJIfqguF4aEU0hGfOj9t5yzMNehBdWY8AeQBWNpb2iQ57Q+c72AfaTOXJ4dtmtWWu99AhMS5jhQF8FjHTaiqHy17oLgZjIhRxsoA5ENPzw+BVtM8npqNvAE7EfU0aUMu9FG5pG2hzq+S9f7cx1wmfJj8uBijldHqN1xTJmzu6IXH0kXAsrJuwaOGNYbS62J/HiTIeALsbo/62Cb8IUEo+74uFTN1qxQqWBwec9Vj3PfPex2eIwJrhSrAv0kXLsByLTSEykwEyQSMw6fPwO7K4U8SL5UDvKp72Yyib8tuK6hMPFJtzxb7fDNQRprslpI0zj9lrKpG4y+ofucjumLrIFRM7WHEiwqNhyyH2cY3cIqQVGDEXLDAVFt8ytirohg9Xe7tdFYkknKKxGte5+bF3u3OBw2Py801i3FlCelgBuYRZJfi/frw72ILtgUMEBfDwMXyv9wg+6yhDh6rdChr7qlnLHSxMj2ifm61LQSIRzClqQaydNEYcvFR2AZuE46HGmuX55PV5++Fy7/eXKabEgejChFQXZvY7t65IiZYPx2E8TYv+M18OVpaU0BCbUaV/dBYsmNXl9ptl9tL2tIR8tKxRK77xx0awwyA5bae1UmZaHC48oloutqqxL9RnXYlpc7sWbrfIuqxTF0NRZeKRZfjLB4Ijz/YIf9z0tWkr2Ie8Wdyssbq9CF3WShzsWebAQu2Tn6MBOC8APMYokviuEesBGjSHVeVPx7PWQBQn4/vyTAaKHIzv3inRK6fz+CMGw371zBvZDlYfkNjh9Hum/mRP7adSDVtETKlDQCIU4ufqbyqD5wVMGfDFW+ncjEGla7ovRjsjfT/s+egDpD5lyCAHUxTrg4Sc2NteBqTiPKBh5PZKKdErizg2t2fM2aLwdvDnxBi4htT/ndZprvx/mvMGoi4IdlAtjtzGHt4cO6Ow7MDK7oUdg1w7pGDPpLMhvIH2PGPqV2mtRQck2wQYWy98PZlW8F6rZYz5Qand8y7G+x8bBAntOH9BJzj7gvCaA7bdXlxQXUuZwLQEo+IJj38mXeGoU/pwPCxuRyexlfgGArepZi4CJBB
0:49

Step 2

Question

+sMPvOZcgYkQ56bLiUphPEtG4K+/kJ/OIWs22g/iwFRXBmYIFiAsIT54ju5l64ggrkSF87G53wS4OZxcTohVAhhqb0SX2vyFkppXs9ioK9g2GjT+3U0sCipG3+24NJXT9RYtIwjmEkUW2UqWOgknR2iTHjqPRvFQem5rmhjjxoKLMNfJ8Qtc0BihPsSDudAD+kgCA0o+VTYtDhbUxzWdMjJzwrjL0gVeVnkjPjRAUW+AHQeArPE8r9GYj0JPksaDApemmGQ0FJu66B/6s+SeFA0hzK3v0p/y1LohY/Gt2zsnh9A77hZMNpKCdj5WeEfSvB+U8s0TZT2jVrv9UIlQJJMNLIxzeeq/ZhxnjbgK97aXNNyJuEDFV5MktKstwFieKottqAd4aUTinrUNOxfgr8OPzjvCJOBAPNnFuRWHxTJnsCJZ4c+bZMv+Bg8PWk0oyiNLd/oanio6AVHiRXIcOvsZCm8GUtRfbv+R6dfDg7+29k60reyMyGojC61tsCVqpJhebn99Pwmi0PohGYJcpOB7cyAZyeRpNlco/bgcEelUnVBxkLxGpFNzv7gT0Ov1DFzilaacAbUJ5960vyggqH8N8Hc6+P0B/Km9X/awGMIs5kG/d5z6g+SVOeBysjFxxWxnhSxKF2D72Qm+2qCF4Dwrtrq3uQiEPOHFBc6gIVLIE+ySlHtCjfFPXFVo9YTVzT6ZQ/b12ndqilIn76tr8y9b3oLqbtpCFgfrPFnxhnnrPSyrlJ1GshpaWAH9LCRqPADppajgEBioRfcVOv0AybJrlc7Cl66wO4IAC5QcZBss4vgO8JapVRfVo8iuLgQkiH+quhiTldDWU+GsvqvEqYu92WzY8pQi8LUCaP7mBX8N++1HXG/GFvwHHzpQt4lnwmkoMgmlgftqH/zaiJT2AnMa6yaub2p3g/1xAeNrS6UVsg4WdGYlz6XwBIiYdWyMdmN1c2CYNl9KjOmMK3ARw3hybrvWSN18XnQDZm5NEBbpR2goA3l7imASWQpvI9Tig2d01iU2DcWN2TYyhFE5vsYX0+QYijeRsQ6W7C6g/QK5xZOpCTAKruxzZSEMj8aukBSyj4M8y2Z89nSGHsUAAEBuQWwPjqaY4K7+6scO1swDo8X3SMyLcscuvZ4FzYSSxw18DSs6QJnBvVZ44D5+GmUs/UMTV8vEbhBM5ebK0eTUPRlNYFb2I/RIvvTk0nK/XRbkyz/hZ7lYqM1gifRrjCmy7T8o6j9M0i8UoWyp01d80YRbdfE7uSuRLlrJjkiWhQFOpzwHf5yaVa+rh3MVqpSpRRRR1thWgTPRpczvCW5JE6n7s5KqKlFkszrJQF16kKx8eIX0YbdrbfL54NGl7KNVlZH8NeShwtUbpngDfd9+41ZZJKnLP58XK1pkVl0dOEHNTvf8NIcPFUvoyt6HQfBF6yRq+fBQAHFWCkT/1GvaYCAQIv25MtFBODTOiMvJ+FJLoo4i+q5bQXedQDk03CtKLRLAQjtfdqZ3FP8SkJndqp3fJG4PpYvgKQqr3YGJ6rAOSwsAdR2fln6V05/6q3PCL1ArrwxgrVDzmpKICSpGAR5WZptxqRMuG+ALATqIpu6KdtGM7Ec3kZnbqxONa1aea01M/6M2hvZHdzhemUkvhJcW2THn5YZXfZADFkw5+j7G/z4zgxuhlfAgA0Dcu9DZy2h+kbCRUCFUyVqrq+tbrFQCSvFaDpRXNjOCAQLr0rCJ8aweEkXpqKtgOgcDBWVBR8usByA+01WGx42D3SqSAPlwioDS2ov4QpbwOnNdqX+5TbtZQYNYxTDJr46TDCo3fWBllfAdFIajkpoLJg6GFpEsw5DXCn1ectSdseU61BHN9sx0vhNlFPVa7dRrBQKwDEJwv1cjUH1mvZMrXo3LRaiwo2ma+JynYmJLEkN/ShNGeLtkxdqPG17sS5AOwCMPaa2HkhqWOOBZltD/25jPUEqRaEH3Nfek7e5eAt6gYvOgTUYo24tlMe3RAL7kDET4VkmoPgwxcLBD5APObSnE0PxtsVvSwnblqbldz2+HmC1CRlxYvPy/L2EWECvAK6wiZTnyMRCtrSMJzCMgjFcdWZ1Do6Jk9eMBV5b4e8vSgjIBul7SypxlGsNpb8od9vCmigauJks64bolx/aoCRqcBA4cv8dVgjSX3qjYu7wPDdQ9LhfiwWgpSCE1tUrzRTpSJVtDGjFvBSzqhR5fWPm5T9frprS80Hhy4yCF6LZMXuQ80VFJ976dy0pxXaA1pJDVsMaIi83Y/0zsWb1aWJ0wHvCSKFE2mEqs6dNq4WWTGcb3fjLsGxtsf7HyDZf9hS2K0GkV46WrOPOnECdD2IuqMId87fzON+PxAcw1c8/hrToFdOTy8fT6u8BNEdQ5pQlxz6+MbvX5asrbzwhb1tpCmBvOGK9mvTVQvEtKVRI8yIMPi1/3u9xKhAb2y/U0F93yMG1aM1IVvFnsqStIRucYkZimhzuEMoTi7JLFJh5AZhcTsOhmSzTjTkMZfKH4bu1IGNGPLh9D9KbwNNjz20p6xCRMbVrzEL252vLSl8MKeogRhT6BQ6rqv2tCkynBvzewpB4Ow0+9PlpJ+nybXAN7HBHqkytryl6TP7LEnWS+sXmU3DwHxNFgiYh8PHzuIzSzrQ1n6Jk/SIVloLxqfCyXT87G4N4hhGNUyRExJxizxrQPj2KmHUEJ1nlSy78HNKjuYwU8byKO1qwUDPnCrWMQa7xoHsbKee6kznsOS8EBpdG82sXJmdnR0obYZ6A0po8aswn8/iGng1bVTLgQg59m4Tr/MoeaHFtlyes+nSXOPLrRSl9AeqqbW1z3UZIhzUcOExmzbC2/x16lKiF5rrnnsQ3Z+bXix0OESMzQB65YkkdY+j+gnTVJyP9TOqFljg4dncyiB2Y3sL272m7QvoW+drtfaR7+aanPGZgY761JagIOIfc8s07BYah4efwND61XU3QNiBIr/PuAPtxRZL3uvTEXB48f8UG9fSi9LV0+TpI6zyQSOF411eAaosunQATbdz7nzAD2FfeA8ReuqUfCXoXdA99ei4wm5RDgZXYArEE818pIMTk4n8Tye1VIxcRt0ABoCWLFVX+i81m14p9bmvDIPQ3PAwRPEvrATIWylGqbplbh5xyiwxXZ2shdfEErGrBqYFnB9A4uwH53+JzN3nYwnJPJt2VCbhBpGDKFhqNQW7hkT6caJzEKYh9oAreccsqszKrkQW+fe/yhFXhBUdT0J5r18xNZDBx9F3SLwMvfv+9s2N+p2xFUQjenO+gVYoHzG6hxaiASBWrWPIvshN/6KH50Lp0OrI1RDIDnZrUiYT3JnR3mm41NtlbmQSuicM12f+X0Iq1nOkl3caXR3yWwGjCPUtgVCoNwT8Gcptm3fg9hz3NedND8JxUaXAQv4nE741agFjkxDHnVTTLJCPssf+akWxHWU/FG1j4xvFeEz+qem1SIl2otg5Qpl1P2PgTNfYuX1/BgKkoNxK5S4qji0tH00VFkpaz1+6cWJn4negOS2oQE773n7EtZ8tCbVRL6aonzIZcKOWOZJ4BCv5IWetBMsBTfP/cOVRMKvgDih3ef2Soe3tlysmtuQ47s4uCS79d+L99vq524VAMEsa6jqtl2Qg/lyUMQWchaqNEoSue96z72hRASxoJ1ipJojuERbaeh47ZRs8cANqrMm/I6OIcK6tly23RS72OHYarlFlNC5wW9sJeLRANRAF0gYG0=
0:37

Step 3

Question

Fgc9QHuynFhxBdk1mXfCGRB4yHKCq6kkKx11wM7oxEyA/Jnvbho42ZKy8rfcjN4b6Zl+qSxQQtyVulfWp2nQTom27ztwTIKxrxgnPcUZSwveuCxeEZff1g1GIZ7P+m7kPhzHfjzqPhGfkFm8vph35Hrj/T7v7PRwW44UnatyOhptV9uVxxh8fRR9hNA0iR6AmFc1AVLAfyXZZoHh7sf+A9qH8/HjZLbKgnIcDy/wOaq/Y4bldvAIJipKMEjgE/IGYwedR3qa6FIL15mX1OsBsHjUjH0pU/bs04OXJCyEJp3vNuiEVV0OmVeCHCVnymwZlmom7bgvLVQf7CdraeVsBhO5Q0urluYI2Fn1g3Px8c2JSVNXRTHYwVBbx8WEnAxb0OWHv6KS6xaLl2gHXKmIv3+8gY8M+yA6C+x88kbtJNSvwwPbIY1myfMcEsqMeBK4p9JYRZh1ka2AklpTKP6EsnIQGP1reAXJrDg1v1Iles9AljpsBhMsmL1iBzwkJjGt4dw64Zjdlt7h/+zHeQSQQMeCyDRECGsomEIm0hvH8/Bsf4k6lQbDADklXTQZYFf+Ho5ZW3VSe/eu5ZC5dvWhaBE2ePmfm2nk1wxFaw/XPXU7zrPMH+uOyerrTHxYF2ZTOyRz0XRzYBuZYw4mrEXZBSApOfMnmOc+TTI5r6r3PtxWdfwMwWGhvVO08uETBe0IB4aQAF+iftOGVocLMxZNT8EvUmnQayYVoHpOWu9UeRapPHaOovAfltCMlxcmeCag3jgJDkKHgoejgqUMa3EVLIG6HtiGgFJZa48cj5OCQnvX2YeJ4sRBOk+ZCUhAjAJM76g5Aw+grwsnzXUrLXFEnx994jgmMzkk8ey//BxAgw0mEWIZh2Yj2LoARH3F0Hq6A6vauXOvDCoItuQQvfq4WuGEyHrJEfVEYPHWW7Qh32u14nhtuoRqJLrXMo+12XD1Wfm9p9ymIFRqYVGK0yZdN/LPBaHsnm8iACOuNNEbasByOzl6fC8lheSt3u9jOKGd2IKPJIV4niYY6Ua/CRDxLJYZyQQz0a96d4/D3jKd9ye+w61rrfL5R6vIeCwMNtoCo0NJgJBhdim1L4fETjFjA51PAg75PzUp/dlTGTpP5dgGPpTjGg2BvtZ8lMqtWkBx2iUf1TjgL4mXOGSBPJuM1VWBxvSG/lr8d04g+Ww7uJi6QDbqfymMOXHc+OpnwRTjyZszO55hsUXkCQ9Ba7njljTCwJfqNuEbJRA7L1Un7RC7waNjIBcZ5qDhhA1YEulGKKJKXlQxnRWnGCWdEJfP3ym9I9y8pDtnNyK7RX+z1cTqSb0A7f1LkgBJwepi9MIxF9iQ+CtlKVi4TbJDsyspOaCrXQ5whfYi4iu+T1l6IBQ2E15P5+7/YzSWxGgu9/cdUYCXWZ64l2sogR95KpGb8AvuE7vzRhaUxEhugow1tgmZ2cUufgInjwLHSuk1a/Z1V3A2uZxMKUGVRMpX8XBxqIXtwRqynS8qfLEsYbWYtboS+2+nDLSqwboivuuq9Dd6Q3vNq4ST0qPpvBP8kQwxy0jhVOdHLR1kpwO7V+q3Jv02QR5b/8eWVr2CFa4tP1c9HJhJlfNTfSLVhDjK14TEXY8CG4fkJuppnhB8Q/X5XPFSKsQrNrZv85Ehv6D/INhk3ngl2oVFqN5EFWChdlLae03nv/OmTJFqyErLEEhqw/NEHl3QSBx3RylCt54k7g4Q8h1tZUdulnOv2gb/HTfzWzoczNZFTJnvZ7CIG0ukzEtKoseHgQbqzN8HQuxQapnZ89/3G3Oamd22apb0c0Y2/zq133TDxSP6UJnROD4LfyWPpPKAhdFfKesVYO1h77ToYkwxHa3XyGxBcHLJnvgI/FPpNdYfANDTjPIYYGw/o+DbLc1QMpZPbVvuTuWcdL5+T54/nJNA2wTCJ+KlK2UJ+Q4NpL4J+TjzPJCZw+IM6q6tzKnbMU5tUhb7R8WKbTZ8H9GOsvqGMq5zJexGmEO55Bf/soQ6qqjbD0B3aq38sDODIQ2BKDIh+qOT9p1fskjx5xfsw5wBinXZWI2HfUUtKOb7N2pVfe83w6+nrXs2x7h7MIUW4ahf5w25nVQRDX0iFYqnGEXFnnU/4IyABk5YNrkfZ4DYPe1GWwrqXp9Fqed2V3QIpanD7vp1G24oK6CwByz8/Cx/1FnpJlAufX1CoAF2AD6pQ9RDrUQrVZjz/gMCgHC4K5J9Ea8n5cfgi4ipFqNaY6eQ4B1UR+sFb7DhGbDtLp886MAXhsIW6boq2S9EQ+jACAuDBHpOka38jp7nOTmPX6f4DNuA+ggdaDtrSylyLOCG61LYIGwellN2Fn1n5xl53weGmuVFnGsLssghCeVx3PVzbP5/4wXVUomlRMIkhMrUnn6uNPAfZEflm9+/pCjn/lZCApJmr84rvX03zQmbAW26Cz7fEl/tUtvQY5g6Y7upAxUnEIVjNhnTvB1ZQUSMeY7HRErTukHItQo+yy5iH7IlY8lWyUgix8vy6m3MeKGxcNiQqfse25AIZ8cO+q2gWCTVBLdIkY2i8GL3OOcx0HX6/N+Gsgb6tshcMFSkcqsmVqXfXC4xFpPHgaQPvKnxx+SAXNGjTkH6uH0yBCwaWd2PuYNe46zDmbq2mZ2AFBrixV2HwTYq4A6SoR7NYQrV5r0JwOy55Tm8S/Iu41yN2Uuss/6AhnftGNzn/CpDpdDbUEhGyjbofVmvVnKrMu7m2b9+WHgb5EabFh694tUn9pcG8WkP5nbEXmmbs2MpLhae4K35NkffBEugP5mlHzGcrpV0Jq13bW2ef2/Csrs7xPfC+seB2yEF/LZbu1XCW2WYt0907tNVO0Ps715AiYkEHOa8fFSQmYP1kbobqufPWLfXp1eLtrZKPoc05Olx6sPt3TyItdwyldju+hl4pNIdD+H7rbnVZh57JbOWQ/Dy8lI8DxN5skoVsIKKoPsKdln6rVhGp0Oi7GDWSsySlbc+c5YzqikJfWvMNafypjygYrgi0zITLPa/Tz8eJPNifRImQ0c6tfMkaS/pv5m+rVDR/0RELJ3RpDjlUYMcPZSX/tAoYMbbqq37uX+HGBK52iaFgyJo6Lh0Xlv6bYFDHRo5XOZb+wxq86Q7nF/pZ8UInhHY3a6p0QTegGK8/RFTRSgQIVy05M3jP47ZQMdAuyGW6CuU6YLzcJjYmpD6My26il3WtKb6CfnNC3rJH0X+l3TlliODf3N9xmTn6dPDz94310p0AgKdaA1+mv4ZGl+SORjVykfFTAEXPChvZT2X2FGMNd/DR9W8KvYE8DDHEnHcFvQ+ijenpK3u0xDNzGVJRw2e5vuI4qPvo/CeuoKGS0XDSGsxEwVgMpcZauNtegRDjREeQWsdBwWOtd7hrVwwXZ6D5ukxRcC/Lw7Gs8chbENYrEV8rc/H8Ar2YbmyVnKF5Vmel/SVL1BDJ2QxNiS96fWs+wxf4GEc68hltvB9tNw3BrFZdnHYk2um8yMnkjxK98NFu7ImryI7YK6mUuSCetZ3HFJ86pBkNW3kpWIqjpDGcelqKB4UWk3kPyndBD/CDnR5ns8gzBgrhyNzb6PI3ygPbgfxbA8dpINK+XEI9qRdSMLI1SN28wnqbCFE4e2oxLRvHLCYCNTHr659mDH82x94ugpcCc9fCKFiN7S8biGmkEJyB9w5gaJaQm5pSLVyhJah6Z3sqcldBqmFPSkesoDhqUDeZYRF8TvpkR/k1sC5f8OSJlB6vnkg517hpDm+4MnlRdirHypFf1ZY7QeqjIFbwogIXjry8wSOtISfEH95hH87F6sXfIhgeHpeJPyTdoVtN3LkuWtQhq9oqpPB3g5EIjdhpKZlfi0ycES284hOUH36DZEzW1AFwaU4W78lxiMaJI/qr2uefFXfi0S+qrSD07L7/21NNClsS+0YZhHUbhcuJBfse8sdywke+mUrEMihSJT4agNwQNeddVwWtOTchdSffCKZlQFlcMh0iyShz/N4L/L6lAqJn8vJMchrjXyZ4vSXyazH9oP2mxvGQzsNUOOTwmZcS2VqtZWUSvPywix0jr7Bzyt+cZosACLfy8gZt39Z63U0iU7YtNBXcwjSOpyMP4LAXMcp1AIi8wk07cx6woAU0jrF+WjDehjipuMsZCz9yprUcV+thkkkKnPxahp8HTcY7js/ddwHc/bXTMh/7kN3MlpJuzkjD4zZ/1R0OQbxBNznPS8gZ9xQ5zlXWT1CCZ0N+cS5ZlsC/dK25ju/mgY1pt/19Phd9ev4IYajXg7M7rAQ3f611593wEDHr6+6q9kwB5GPz0w5FR87Rk7Z3HPn9LGWO7mbQDcm5jk2dx9TE0Q/13ObYZS9HKqYHZLCrCTSAbUTVu1uEaBlnnpklpU4gViKMDN3rEtqfJZ7QhaCOKgyNCfvx7CtyP2l3HDft0/Io1tj1c5d4IEBQo0Vy5rXC+Uy63dIKqW714nE9YflRuw4q1eGYRNVUj4ymHfNtmygdAnteuyzPeLO/BYqg6OduJqYGJELreqgHAn6LYsRpwL2Vee6eLpl8clS64PjfCWfBAIpIdh/9LdnWwpK9UcPlLoH5XJwiJHpKr1d3aKAR9FYCBL4Phvpf7mL1RXHEFU+G02GUVz0YB5h88FLAffsSfMfxMGjWpXdAL1CrXi5/SE4ZMSgy/CtoTviLChjZM+wYI4D0QU4tU041iitJ4KQ1/BQ/036kL1wW6zIekZpGexZV5gXkQEYtXjCh6rpOON17NSb+965lKv90XM1
0:27