Parallelism 2
In each pair, click on the better version of the passage, the one that does not contain errors in parallelism. Before working the exercise, read the example, which establishes context for the numbered items.
Click Submit after each question to see feedback and to record your answer. After you have finished every question, your answers will be submitted to your instructor’s gradebook. You may review your answers by returning to the exercise at any time. (An exercise reports to the gradebook only if your instructor has assigned it.)
For help with this exercise, see Parallelism.
Question
E+KrokUNxLFVtjSs2bMHsP82KTDPUwMdRD2AxqKg0m6SrXGJSSDLgzVNQ6fNP1/xfALqmA6wXKt/0Ant0YbY0AvlGLNSBh66she9JOuZ+nuD0lFz8pet9ocXZ3NhegKfa7VHes6vBzfINEQT2VkoJMWO9YHcakoFJNcP+kgVoRhBMV7fR3nPG4CnFPjK5ZeRGyplktiRE6CXcWWV6VaDt8xm89sjWLLppiNc4EIaGdvRuoAw2PXksrBpzgClmHxeYAmtmUReeYcjJ144lbPTjFbLT3DpN/1Fcwak5vpNc3HeqDTXE94e9DeZW5x+xWlrnQS2ExRzDrkPBNOYwd+kqIfP3hQ2qtkbY/oDJInX9xUOjfepZPgKVg4XsykJzJ9R9SDTqnYq7IYGR/PWaZ4xHO/rW5b+GAES8lDscNnyh8Xy7pPbyQUdHWCy6rsGztK9pZ1ez0bGrnD21bMXsKJZoHqZR6jwezl9ONEkCEkMiglYcklhyULOgH/lbLJvyAaodkZHtVoFEzdjCqRMq8Ne0ptFaX9QlZd5PLeom1zddgiw9udoVBiL5wD1pbN8PBO+IiEPP2E6OmM7b9K23ldQTpXtSjerdUZEfwuf5keRWKIwnwxUWPftTTxElaE72TTEPQVwSlG3rvtMElfLgXuOKrKtv4J73xguxy6vby/f4iy2dBNDoUeD8rfzYGAU1a1OCkNcyqFA+XuLeJnShxFxi5Ttb5KpcLMWWsko05lGcZsLOCbo90PHvuEL3l7PStnjRfJYK1a93e4=
Question
Mclc0YtxwJt4lPZ90Op8z3k7AdJi+1QNcsNerzseWG2uBkjg1wNaWfNoynU3v+I+aswiBFJ6D+K36PZHMQHQMvDx8RNroQQjAznmyfygqKBGZsvtg9ZP++VnO9Gdtadc2l5MNQ/Xqt6fXFMpJRQNm11F4qAwTwopWKW+CTPVexXLcehVWc8AlWNwolPI6FamgO//bk/AXBZzFnh4d3NOkBXwvrLpit3NCKPTxktLuYAT5kYfpOgoyVKYENQeV8J9fst5J4qAWzayWdWbEviuMfli7JQfjwcASOF/BAWcoQ7VZtzxy4PoAKF4xrCZguO3GQwpbz8PYHqAmTr2MUFFi9gDQ0gYmhUS2VQULG/Vp53h8SNYiWZtMmMOcLOgDKwKhQdX2nV1i8bfLrNytxq55XCPzs21z3/tNFwz7q7E2WmoaJ4CKo768hCjpeGrJoHOqCLxSSyzZUfw3WHFURChhAqNcSH8ExCMqrQFmSavplzbW/eqTiKHpmUzVV3C3c76a9DLIYDXTPKVTcBzlKFhGqkm0oU0eKdgo3KxGPc82uyd1b7nqxWqkPDihFDtjMX43h88tXBz/+PmjWTvB5AJCcWlbiku3W0danEFzaVw2bXZRqp0ePATTs77Xj8rnxtg/HInE+zNChmUv6Rufv5J8Ux0DQPFn5bO8PM5w/dFe+7gTFXi++EyN4uotMW+9Lncrq0kda3Cc+TUDCeCBpi3IMwrrmEWxa7CEH48gF45FOkEhszrM+XbXxJUYoE7W7tqcpV3RJZF4NvenwWOjVh6Rl8k1G7JaIMeSY1szmDImHUcQ+xsa4WRSK6AolN18raGxIP4hgVBGv3mQdsP0Hz5xAsSIVODN5RR+qQH2WG9Ddtz+3QzUZD+LOOQxQ5PXObShBRT8K9d/zdlIps20zSILJofJNowQTaXr9i6qK2MVi3WfR61+Bvp/Y0h5rKW7tafpAil1hY4gH5cTgPtCMIqnINtu55KSWeHd/2pYzPYTCT+CBPc1UUy6B+zMLzt/jrwzu3ODYpqf4oYFv7+4B5ekHFHiZbQv9AoyKydcqoza96w5ntWq7v8Z9Q+uwxXyEHB1cPVEtLeJ5QDQainE7f7kWy8fT27OJ3ICFNLcQU8AbACkV33Fk2keV3D2zI1/+mc513ljlJwYvyKQllo0N4Fw43s6rriZwdPaZSbuBtv59XvZiyA
Question
tvQZG/l2N1/9pmiQ4dPXcFMPHedj0ygRidYCPBH80GOhBfMCnCRPtTtzSlM/yxkXXTJMQZphVBVTnIfHTY9MHK7HMis0fsR//XFG6HDCOEuLKEyS5j3ZyBjADgmFTgkCOYz1U01RgHRQj0KzUQFLXaimgL9ZoBPw6O65jy82XeVNVysLzUFuMZOHw6qzKxKczQInE72fRldceuWyHQdz+um1FMGwj+zwO2a5lwAYeh2jcMpGWOJ8trXlwJzldm12U5tCNkSJsOwGM90OqbgT1RAybUbJtlMSM0t1RUw7PkuXJoTMRaNL600isH/vsv+f6wYzyrRiiRiINt0qr7fq65fT3SbbGg1lGpfDm2hWI8TQyqe/BeAGr7wihWbwp1z677hc2hI93JcUcB2B73/Bm9K9o13K3QjF3bYsRroSCgVqKnzvrpiEaiFJSPnIskxfVWZFBebNWPSb+cwsSnrmBZqrK97rDcY8uJKiwIe3QnT10TjqSXE8AXqpBhn++lNHtFtC6i9D7jXsSZM5h08JaMsdFsaKX9MjzxOAhDSDE7YRCHgUEeMz7IZuETGLCMyW4dYS42Rq+wQ=
Question
IHXaTfRAHv4bzcXvVN/AODJnLNSqRrdXvurPl0XY5X759DpUYSSzqPsuKr3BT25rsBqFsXXKRjFfpLa67L+LDiNHlTBvH+LqStAMjBLQnSyoVDvjchcW4xz52eA1hBDyBWMHk1iIGbPeZFvfMxCCaaFliPbwOPAUuOQSjW6I4Z+l0bE99eSM7YwAO/h4ajYHRFVF29r1hSgk1PV4ULegbeVYcjZb02e+b428L8aotNf+oOQ/w7ziPFfshNYJ8pkdgqMo0J4x+0owYAAYDb5Mzx51ySK5uAC4tNzPw3eHJKySLVjUSv3Lg/YiiR2asNFZ+s0oyLSe94YSv6KbSHqtoi4m9SKworoiiKQVveN2nx6OoKi4pxbRNPDiHfcXyjoEnus2dDgKPvh9zBppj/gef0J9kPHjVgaRlYUdKj7K08vH2BwdItpxxgYZCWco0h5dHalU6+3ZdpCZqrExDurDnZ55okOB4v6g9hdDyEknlTKkZ0uCq1KOrC1ypWOTaU2XnTQmMdRToPdiQo07JweSe/Y6jJK0dJjygG2P/7JQvZf5CFzUI91vB04I3jvq31avMdiXOiDNz/oXhP5H47tNS98IfectBjeo
Question
VjIHtX0c8350h+glp+v4+1/Ckmy+lHzlvUSvaY4FzsbHmHrsqLu9NuAkFBzUnIYTFyWYZXFPHvHuFS4luhcdxfK/c68N/Yxs2QX7yAJF33iONesUGWn4vmylXrHw7WmzSzAlU7V3zetrF3B5Xi45E/Vp1JMtiyY6rsfSRSYCjetIYBePwlT90X1QC4Yp2fF78L982YI/1vQM0Yy1KENSPD5L49tgm6GqcBCuVR/hagEJgndFIpnfbncF3WJNGs/u4gMYMNj6mQpmST9HbItfRkAes/u3Cw88EBJtQ18Hnrq4oerAH39svrEA4zmoXTTOYG7XGWu9qF0tWlOM/TtfzZeJBpJNP1Il30wt1eV1kyjEej9tGkD+4LmISuotQjJqXd4HkvxRcjiHmkWhYYlDTiHQYwO0Wzr7yPZR4mU1J1R++4EFFqewuaAxnn2f2EMkfd/t5PT/CgjQBrbUvLxuxtuWxNQE6eaDrKvXnK0VKk2AZZUShzxBOBqbBrtTrXBBhd1A4KVKP0gOTSss1im41+DmjcwbED61TOPglAKIKCLOkMOWiwKZeRCALBUMP6YDGdPDWy4HglJL2GZ7sIP/Yh9slP7f9ifabIyTBYmR+1Mjv2pL0BF4iIfjKzIMlEJludtrhnkgHmHvpB7ow2YsiyqtWSXsuv01q92eIw==
Question
OvxwEKkmRmbzJB0k9ztojqZQzvloCL4A0Gksr5JdTkbtTAUib3A0TkRZ2UPv9aFYVGIniFrONH9VRmB30klSVJYC/msdID0f1W1F4VpONdocvT6e59Dxio3ln2BOip3nQ9HaLDxbiBAIR+ADYuGDKjF0DNql0xe3Z9uvRNWaFO9uKDgl5jRnolkIWv/PNRlowOZImKYaKWhfk/qatbgPmRTKJeyBaTHvm9pIKgfZMy5DZBIkTxTcsdQS7Ahw/IwG7MLLNR+01yF2/ZsD8PqWRBy4rvy73rAPagv0pJt+cPipKbCi7/k6+yDgdPo3CCQ/DjyfrFe7ATrcurAej+nd/bvTgVIcsw402QBz3/Rh/U//DlPJOnV9PZFngw5vrkhvaMEcAr4BS6uy1ERZoMSVg4auLM8cZnH9O5T5CWJKUXYpoDygB6i7HpgnMZ/Ty47Iwz0WyGqzZ01mvjkarVn8DX0q77EK0r5pruX00aWzo+SyoQFUSOCoIKOGVy3oBQkEFdYPIvESb7eHbxjCdYmPNd6ibrdAJsOuP6sYT713vrsHRcJWTXT9y+NeKW1XWt1iGy3HBpgj6rYA7pLdPm/i8uZ+/twDkeqWdlPkeTXP1hRVBg+v7jwQt/MEuAYSyiCr10TyxpjRZK4FKKsx6Bs0w0vv2vxf+/nVhRhO74B62wneMQ7MUw3iwrwxNYlulQzOb3nhiPKabUHwc3PJWEVQ0Jt7hNS+CEzwps9CAgqVPXXVbGW8Ztg6pYk/WTiTTgJpqN5onelB/dqfW5M0xzlJgu+azy18XTxyD+KkdxgYEn0cF9L+hbKdXBvNeE3AvdsapsH3XHKzmN6MfnRs
Question
QFkasbdxAnuhjaEzbKtjbeAvQZnpbfjNwIHnOiWk2VGirS+cbHfBvBUgALWEKlBnuFFrKnLS9eeps4a9SNCs80JmCWdN3nuhq9lwdSVsSqiB0NxWx1WBkVD+2PN0o06VcuZbmnUCGEEw4apwvifjkMor0A3pYoQbzBsJO2TwvvXiX+veSKXmKbcuQBqYhhdLHkYRwruCtCx5WBhxZzeFiWqTAPKUqGTf+lU9B/TSr9IANv9C/kqMx8akrD6pP38OqLjmUjPC+ncnH/VcIfkCpmsKLpu7CnEndwYfG/nu8JOpTETCo5NAUjYpqgCiTLlqs+gMo9jPg/Sh845SBjsibBG5ovak8WJszblXJ7AH7NViH03qAepsXs8O+fYxeh1mem6Pu9BEr5zX5w2md1sOz93S/Q+WDkcwIjpLpGlVpfOM1OGvbgdgakqqPfYa0bGGX4QkrZJ1bpcivqRMfaGOiJ3UETahgLuMM5XIKKBYy0IsBjfl0WK7g1dJOhfDpK17avmw5uPVImjge6ChsDL5HyKetIIlqU0fbjdfiu0uTjPS4YO90p4uDnT7NN84dUcx0i60Ferpd4XIYqGyFiUyA+oW1p5uxv70MUZmL8449PCrP5i9/8DLUA6eX2/FXY6CFmvighANIL1ozWptlM0Eyj+9vDkBNj/w8P6+gz1EWC1eBMIZfI+9iGHH63JikQ2zRDPq8VM/PHaWu/+Dso7h+GKKuAxm6k72Q2i8FvGhbHMh8NN0f7h8/qGjNkHX7S36mfwzoDPzEpHGl/hjyaam7x8jLeWLS4+N6AM1676dipQ5Jv6vQQNlElHwB+6OVvU3Bfi2DB3fZ76M1GfoU+Tt6Q==
Question
W00PtsnxGEyPYTckkO1xgESHA7x1IuVeO2tF4bhuxyXPKB5QhrKuRQxO3IZDhmdqryIDEDzRs9ha25IEPzliDWm02KS75rJ/Is7nvoFC5sVxXRPHK6/HlmXXvbxGaiVjwPZogItGBf/997UZyRg9Jbf+sRsqOejbuOvaDfX7IgKGaKcn52FL4J1ORsV8gSX6CKBSXgF4dwfJkfu9DQVU295d7qJVy7q4B6guq8b7WucbIRugoMukAr91QxOFeU1po5XVJuTQ+h6OKTC3s5vs5NQ/8t+M/m27fe+HdVs7TuOjQdGrB40z4bk/74GJRKLTgZ9CfvJtZECOsSf2QB69BYnJlTeQ2wNiOPFy/v3o7ylX3/gK6iABHieXBAuEruT56qyBfjfp+YIIYsrvNWRRSyJZ08DyQIjojmjR4bcnuRof6qFRDaE4WA0HO764WHrWnF9fmhxB1am+tqxOZdcmxkEOwhlWMN1nKlIuyKz4qLILvsUXv41xIMRbOFqU1H87NSBAgou2Hr6315LE5uPcXJG0vhsrxEiFgZfrkGB0+uXR/pDVVaMDrmy7EvJsggp79ARRpDT7Sd88MHFt
Question
Xj11aPzJFYL7srxOX0waN4fKcg34h2kazhpZLuetyrQ9x57OUzyZ+8Z7Gbv4S/0WQgzu3uI+T17GNdhuKnVIChw8JB1nmhR8uS1DtElBFPP/IFoabCrTwdvMzzTCtAJnUqnDbSdUpqOnAa/hEWB7Bc8F2Fu0c7jmpaQx57ZOrj8odwDSPFaTOpoiQn0ryfOw+yOoO/BToDG8yLva0a+lCKLuGzCG2c9GqJVm7XQMzS1Agd+7mFScf/LVIVxkEzEFCNkqPz9RkwxW4xduKA5z0xXZfM2McVjkY4FoP1S/eJUApXb4O9tmsgliVD2xTq1GYoC1GkVQq73gi2vUgrtpek/N+s7VzIyZhvADzgR0mNAps2uN37S4oxC7FY0zvS7wxzJ9Je2GaUkLLHLFTfK++NIBkE+qZ8kNT+9oapgvT6DmFGZ0uMMn+Aet8SF2zdexoRBZZnIAKKJx+fVlEe5RHZBzb4ht+UH34twHg8y3qciJm6IvjT0nFT/4tH+AagAQg1M00N7kGRA0pNGafs9x9/NbD+rKttYBfiLZUjij2ipUXm9o0h2L8uQ0q0b+58sBRx5E/4FHThqUeuvAUfW+efAEbaJZ5EKd2ne5DTg9iO/Ri2/AbAyAgFv8264AmAs3Er9FC5DNd3/EIHYomMvae70wCmrBQZRfL6Rnv6jsg7YdajcY/1sOySj7Kzq314iU9Uy72Vy/67zUEU8vy8rCuM2tqTPTk7EkIhv/BjmcoYN5G81o77hXYU8OlMeTvm110F3e6pxVwfyNmiEi0ipuYPKh6FxmLLeaCg/jlVpgqZ4dk6KOvIPoVfK3kwcM//ZWtCkZ9jKnsqHZwR7MPlbU/1R4d/5RXpUes7u3pXUCKuIsDRUGVjkgbh86Zq36Ia+FaO4MB09H3cda5yrhIfm8Ud+/4ZnPhefWWJn+EYLH1uWIfoxRUq34R2G3e2j0bmv8Oe2twfN5lGr0h9ask70LOYcDjzeyN66DKOmBadpXm0sg6oMJ4H05S+1F2xFJijOIm/8HAX1UfJuREdYdlPEwrUaVJ9+IeIYEO4B2Jf6nVg4ZupKgHFF3/XGdrq32kUx3g5SVXPA0kt3lWvjcx4bxA5s0MdK6ycug1gfUoIU9P05jQtcjr2Zk8yh5qEpkauJlgeKQrOgs4SMR/MkG9sjK6YAlvn8Y0zGbhibHEJRLx++eokXDYqjVF/nmppR7Tam3v2H1hVz3jGOGpdV9+9nUwIEgbAip9Fbo
Question
j+13Rm6FSt4pAHRDN+dvuVamliHheeRzzNi08p3ksRvchUnuBu1X6+5B+BiBPnU7pNE7JtSjcXXrKeN2LBl1yuKBlMLAx1xupw4nnc8eLOiF8KLX6hpNbZ+T0je/25Qw5y1ewqIVJZ21Gilpm7hGU8CXGTVb+cCsR2cvE3ISHH5KoUkSD3vx5qW2xmYy3rjFg0x1rit9RZA9bjzwSda+QF2oVB/UsrPqEYWKqkdL7/JXVkX4OU6U/CY1pyueWyI+kihTRJHLwliOJ3dFxh1IG7o6DlQjGAruJX4sKLYJVZQyrqmNYtG++Ek77s0G8wg6Y9gqHfw3C3f/YsGPJkHZ6TSoxzJt0i2HN5dsPM3JuIVo3kPZAJuLdaNlHs3pY/nKer3X/VdUdaiQ0UEU4bghFkbJSEoH41rD+4zXYKiJ5tJEYzgeLK+ppj0OcRjLyYni+dKGzH/e5bo1u2D0vU+odwBTYs5JF7yVm4UycuS1f3M/MzfZlv9yBW7boktDnHgB2Yt2vBCLxJnZ2QRYCSIICBk+/wkaIh8ezm/zG4AiM6skTkFbi3KxqLrOPOXJK6/QhtueRWgWfZGsiP0NE6IQ0sz73aOcZ+iuQMlDzPq+6bX5mFNXpJ758/yA7YhfbLB0ubUuAcoqB73zJ+3RvkxSuViTuPtvj6/JP0Xycs7E+l4na6soupsO1ERquCXM85M6beKPyITuG8FVCWwVl/jgzvKsKtl1yscLNrXgpb4xN5wsNJnRYWLV043M61YJXYlF4LyTh7WzCeyQ8cDqdGaVt8fj1belz8JSZC0kaWXPXVSKjX3uMjp1yTibFSKUgqEz5yotHSfvqQp7tlrMZL+hH16wVHcvbdx+474zaEciCrsPx7ahzlWRzzgWTsLjeIn5mLYW0rFWhT4lgDdO2z0c/Q2OFQ0NQqr91B39etpJjrL6NXErYei2yOEKRoD3QOxSCkir/cObN6/solzn4b2aJvAD2IyInmm3