6.1 Homologs Are Descended from a Common Ancestor

The exploration of biochemical evolution consists largely of an attempt to determine how proteins, other molecules, and biochemical pathways have been transformed through time. The most fundamental relationship between two entities is homology; two molecules are said to be homologous if they have been derived from a common ancestor. Homologous molecules, or homologs, can be divided into two classes (Figure 6.3). Paralogs are homologs that are present within one species. Paralogs often differ in their detailed biochemical functions. Orthologs are homologs that are present within different species and have very similar or identical functions. Understanding the homology between molecules can reveal the evolutionary history of the molecules as well as information about their function; if a newly sequenced protein is homologous to an already characterized protein, we have a strong indication of the new protein’s biochemical function. How can we tell whether two human proteins are paralogs or whether a yeast protein is the ortholog of a human protein? As will be discussed in Section 6.2, homology is often detectable by significant similarity in nucleotide or amino acid sequence and almost always manifested in three-dimensional structure.

Figure 6.3: Two classes of homologs. Homologs that perform identical or very similar functions in different species are called orthologs, whereas homologs that perform different functions within one species are called paralogs.

171