Chapter Introduction

SELECTED READINGS

B1

Chapter 2

Where to Start

Service, R. F. 2008. Problem solved* (*sort of) (a brief review of protein folding). Science 321:784–786.

Doolittle, R. F. 1985. Proteins. Sci. Am. 253(4):88–99.

Richards, F. M. 1991. The protein folding problem. Sci. Am. 264(1):54–57.

Weber, A. L., and Miller, S. L. 1981. Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 17:273–284.

Books

Petsko, G. A., and Ringe, D. 2004. Protein Structure and Function. New Science Press.

Tanford, C., and Reynolds, J. 2004. Nature’s Robots: A History of Proteins. Oxford.

Branden, C., and Tooze, J. 1999. Introduction to Protein Structure (2d ed.). Garland.

Creighton, T. E. 1992. Proteins: Structures and Molecular Principles (2d ed.). W. H. Freeman and Company.

Conformation of Proteins

Smock, R. G., and Gierasch, L. M. 2009. Sending signals dynamically. Science 324:198–203.

Tokuriki, N., and Tawfik, D. S. 2009. Protein dynamism and evolvability. Science 324:203–207.

Pace, C. N., Grimsley, G. R., and Scholtz, J. M. 2009. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 284:13285–13289.

Breslow, R., and Cheng, Z.-L. 2009. On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl. Acad. Sci. U.S.A. 106:9144–9146.

Secondary Structure

Shoulders, M. D., and Raines, R. T. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929–958.

O’Neil, K. T., and DeGrado, W. F. 1990. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651.

Zhang, C., and Kim, S. H. 2000. The anatomy of protein beta-sheet topology. J. Mol. Biol. 299:1075–1089.

Regan, L. 1994. Protein structure: Born to be beta. Curr. Biol. 4:656–658.

Srinivasan, R., and Rose, G. D. 1999. A physical basis for protein secondary structure. Proc. Natl. Acad. Sci. U.S.A. 96:14258–14263.

Intrinsically Unstructured Proteins

Galea, C. A., Wang, Y., Sivakolundu, S. G., and Kriwacki, R. W. 2008. Regulation of cell division by intrinsically unstructured proteins: Intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47:7598–7609.

Raychaudhuri, S., Dey, S., Bhattacharyya, N. P., and Mukhopadhyay, D. 2009. The role of intrinsically unstructured proteins in neurodegenerative diseases. PLoS One 4:e5566.

Tompa, P., and Fuxreiter, M. 2008. Fuzzy complexes: Polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33:2–8.

Tuinstra, R. L., Peterson, F. C., Kutlesa, E. S., Elgin, S., Kron, M. A., and Volkman, B. F. 2008. Interconversion between two unrelated protein folds in the lymphotactin native state. Proc. Natl. Acad. Sci. U.S.A. 105:5057–5062.

Domains

Jin, J., Xie, X., Chen, C., Park, J. G., Stark, C., James, D. A., Olhovsky, M., Lindinger, R., Mao, Y., and Pawson, T. 2009. Eukaryotic protein domains as functional units of cellular evolution. Sci. Signal. 2:ra76.

Bennett, M. J., Choe, S., and Eisenberg, D. 1994. Domain swapping: Entangling alliances between proteins. Proc. Natl. Acad. Sci. U.S.A. 91:3127–3131.

Bergdoll, M., Eltis, L. D., Cameron, A. D., Dumas, P., and Bolin, J. T. 1998. All in the family: Structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci. 7:1661–1670.

Hopfner, K. P., Kopetzki, E., Kresse, G. B., Bode, W., Huber, R., and Engh, R. A. 1998. New enzyme lineages by subdomain shuffling. Proc. Natl. Acad. Sci. U.S.A. 95:9813–9818.

Ponting, C. P., Schultz, J., Copley, R. R., Andrade, M. A., and Bork, P. 2000. Evolution of domain families. Adv. Protein Chem. 54:185–244.

Protein Folding

Caughey, B., Baron, G. S., Chesebro, B., and Jeffrey, M. 2009. Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions. Annu. Rev. Biochem. 78:177–204.

Cobb, N. J., and Surewicz, W. K. 2009. Prion diseases and their biochemical mechanisms. Biochemistry 48:2574–2585.

Soto, C. 2011. Prion diseases: The end of the controversy? Trends Biochem. Sci. 36:151–158.

Daggett, V., and Fersht, A. R. 2003. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28:18–25.

Selkoe, D. J. 2003. Folding proteins in fatal ways. Nature 426:900–904.

Anfinsen, C. B. 1973. Principles that govern the folding of protein chains. Science 181:223–230.

Baldwin, R. L., and Rose, G. D. 1999. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci. 24:26–33.

Baldwin, R. L., and Rose, G. D. 1999. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24:77–83.

Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D. 2003. Design of a novel globular protein with atomic-level accuracy. Science 302:1364–1368.

Staley, J. P., and Kim, P. S. 1990. Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature 344:685–688.

Covalent Modification of Proteins

Tarrant, M. K., and Cole, P. A. 2009. The chemical biology of protein phosphorylation. Annu. Rev. Biochem. 78:797–825.

Krishna, R. G., and Wold, F. 1993. Post-translational modification of proteins. Adv. Enzymol. Relat. Areas. Mol. Biol. 67:265–298.

Aletta, J. M., Cimato, T. R., and Ettinger, M. J. 1998. Protein methylation: A signal event in post-translational modification. Trends Biochem. Sci. 23:89–91.

Tsien, R. Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509–544.