Chapter 33

Where to Start

Axel, R. 1995. The molecular logic of smell. Sci. Am. 273(4):154–159.

Dulac, C. 2000. The physiology of taste, vintage 2000. Cell 100:607–610.

Yarmolinsky, D. A., Zuker, C. S., and Ryba, N. J. (2009) Common sense about taste: From mammals to insects. Cell 139:234–244.

B39

Stryer, L. 1996. Vision: From photon to perception. Proc. Natl. Acad. Sci. U.S.A. 93:557–559.

Hudspeth, A. J. 1989. How the ear’s works work. Nature 341:397–404.

Olfaction

Buck, L., and Axel, R. 1991. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65:175–187.

Saito, H., Chi, Q., Zhuang, H., Matsunami, H., and Mainland, J. D. 2009. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2:ra9.

Malnic, B., Hirono, J., Sato, T., and Buck, L. B. 1999. Combinatorial receptor codes for odors. Cell 96:713–723.

Zou, D. J., Chesler, A., and Firestein, S. 2009. How the olfactory bulb got its glomeruli: A just so story? Nat. Rev. Neurosci. 10:611–618.

De la Cruz, O., Blekhman, R., Zhang, X., Nicolae, D., Firestein, S., and Gilad, Y. 2009. A signature of evolutionary constraint on a subset of ectopically expressed olfactory receptor genes. Mol. Biol. Evol. 26:491–494.

Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. 1996. Visualizing an olfactory sensory map. Cell 87:675–686.

Buck, L. 2005. Unraveling the sense of smell (Nobel lecture). Angew. Chem. Int. Ed. Engl. 44:6128–6140.

Belluscio, L., Gold, G. H., Nemes, A., and Axel, R. 1998. Mice deficient in G(olf ) are anosmic. Neuron 20:69–81.

Vosshall, L. B., Wong, A. M., and Axel, R. 2000. An olfactory sensory map in the fly brain. Cell 102:147–159.

Lewcock, J. W., and Reed, R. R. 2003. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl. Acad. Sci. U.S.A.101:1069–1074.

Reed, R. R. 2004. After the holy grail: Establishing a molecular mechanism for mammalian olfaction. Cell 116:329–336.

Taste

Chandrashekar, J., Yarmolinsky, D., von Buchholtz, L., Oka, Y., Sly, W., Ryba, N. J., and Zuker, C. S. 2009. The taste of carbonation. Science 326:443–445.

Chandrashekar, J., Hoon, M. A., Ryba, N. J., and Zuker, C. S. 2006. The receptors and cells for mammalian taste. Nature 444:288–294.

Huang, A. L., Chen, X., Hoon, M. A., Chandrashekar, J., Guo, W., Tranker, D., Ryba, N. J., and Zuker, C. S. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–938.

Zhao, G. Q., Zhang, Y., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J. P., and Zuker, C. S. 2003. The receptors for mammalian sweet and umami taste. Cell 115:255–266.

Herness, M. S., and Gilbertson, T. A. 1999. Cellular mechanisms of taste transduction. Annu. Rev. Physiol. 61:873–900.

Adler, E., Hoon, M. A., Mueller, K. L., Chandrashekar, J., Ryba, N. J., and Zuker, C. S. 2000. A novel family of mammalian taste receptors. Cell 100:693–702.

Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., Zuker, C. S., and Ryba, N. J. 2000. T2Rs function as bitter taste receptors. Cell 100:703–711.

Mano, I., and Driscoll, M. 1999. DEG/ENaC channels: A touchy superfamily that watches its salt. BioEssays 21:568–578.

Benos, D. J., and Stanton, B. A. 1999. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J. Physiol. (Lond.) 520(part 3):631–644.

McLaughlin, S. K., McKinnon, P. J., and Margolskee, R. F. 1992. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357:563–569.

Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J., and Zuker, C. S. 2001. Mammalian sweet taste receptors. Cell 106:381–390.

Vision

Stryer, L. 1988. Molecular basis of visual excitation. Cold Spring Harbor Symp. Quant. Biol. 53:283–294.

Jastrzebska, B., Tsybovsky, Y., and Palczewski, K. 2010. Complexes between photoactivated rhodopsin and transducin: Progress and questions. Biochem. J. 428:1–10.

Wald, G. 1968. The molecular basis of visual excitation. Nature 219:800–807.

Ames, J. B., Dizhoor, A. M., Ikura, M., Palczewski, K., and Stryer, L. 1999. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J. Biol. Chem. 274:19329–19337.

Nathans, J. 1994. In the eye of the beholder: Visual pigments and inherited variation in human vision. Cell 78:357–360.

Nathans, J. 1999. The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron 24:299–312.

Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., LeTrong, I., Teller, D. C., Okada, T., Stenkamp, R. E., et al. 2000. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745.

Filipek, S, Teller, D. C., Palczewski, K., and Stemkamp, R. 2003. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 32:375–397.

Hearing

Furness, D. N., Hackney, C. M., and Evans, M. G. 2010. Localisation of the mechanotransducer channels in mammalian cochlear hair cells provides clues to their gating. J. Physiol. 588:765–772.

Lim, K., and Park, S. 2009. A mechanical model of the gating spring mechanism of stereocilia. J. Biomech. 42:2158–2164.

Siemens, J., Lillo, C., Dumont, R. A., Reynolds, A., Williams, D. S., Gillespie, P. G., and Muller, U. 2004. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955.

Spinelli, K. J., and Gillespie, P. G. 2009. Bottoms up: Transduction channels at tip link bases. Nat. Neurosci. 12:529–530.

Hudspeth, A. J. 1997. How hearing happens. Neuron 19:947–950.

Pickles, J. O., and Corey, D. P. 1992. Mechanoelectrical transduction by hair cells. Trends Neurosci. 15:254–259.

Walker, R. G., Willingham, A. T., and Zuker, C. S. 2000. A Drosophila mechanosensory transduction channel. Science 287:2229–2234.

Hudspeth, A. J., Choe, Y., Mehta, A. D., and Martin, P. 2000. Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc. Natl. Acad. Sci. U.S.A. 97:11765–11772.

Touch and Pain Reception

Myers, B. R., Bohlen, C. J., and Julius, D. 2008. A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron 58:362–373.

Lishko, P. V., Procko, E., Jin, X., Phelps, C. B., and Gaudet, R. 2007. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918.

Franco-Obregon, A., and Clapham, D. E. 1998. Touch channels sense blood pressure. Neuron 21:1224–1226.

Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389:816–824.

Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543.

Caterina, M. J., and Julius, D. 1999. Sense and specificity: A molecular identity for nociceptors. Curr. Opin. Neurobiol. 9:525–530.

B40

Clapham, D. E. 2003. TRP channels as cellular sensors. Nature 426: 517–524.