Chapter 7

Where to Start

Changeux, J.-P. 2011. 50th anniversary of the word “Allosteric.” Protein Sci. 20:1119–1124.

Perutz, M. F. 1978. Hemoglobin structure and respiratory transport. Sci. Am. 239(6):92–125.

Perutz, M. F. 1980. Stereochemical mechanism of oxygen transport by haemoglobin. Proc. R. Soc. Lond. Biol. Sci. 208:135–162.

Kilmartin, J. V. 1976. Interaction of haemoglobin with protons, CO2, and 2,3-diphosphoglycerate. Brit. Med. Bull. 32:209–222.

Structure

Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips, D. C. 1958. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666.

Shaanan, B. 1983. Structure of human oxyhaemoglobin at 2.1 Å resolution. J. Mol. Biol. 171:31–59.

Frier, J. A., and Perutz, M. F. 1977. Structure of human foetal deoxyhaemoglobin. J. Mol. Biol. 112:97–112.

Perutz, M. F. 1969. Structure and function of hemoglobin. Harvey Lect. 63:213–261.

Perutz, M. F. 1962. Relation between structure and sequence of haemoglobin. Nature 194:914–917.

Harrington, D. J., Adachi, K., and Royer, W. E., Jr. 1997. The high resolution crystal structure of deoxyhemoglobin S. J. Mol. Biol. 272:398–407.

Interaction of Hemoglobin with Allosteric Effectors

Benesch, R., and Beesch, R. E. 1969. Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature 221: 618–622.

Fang, T. Y., Zou, M., Simplaceanu, V., Ho, N. T., and Ho, C. 1999. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of β 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin. Biochemistry 38:13423–13432.

Arnone, A. 1992. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237:146–149.

Models for Cooperativity

Changeux, J.-P. 2012. Allostery and the Monod-Wyman-Changeux model after 50 years. Annu. Rev. Biophys. 41:103–133.

Monod, J., Wyman, J., and Changeux, J.-P. 1965. On the nature of allosteric interactions: A plausible model. J. Mol. Biol. 12: 88–118.

Koshland, D. L., Jr., Nemethy, G., and Filmer, D. 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385.

Ackers, G. K., Doyle, M. L., Myers, D., and Daugherty, M. A. 1992. Molecular code for cooperativity in hemoglobin. Science 255: 54–63.

Sickle-Cell Anemia and Thalassemia

Herrick, J. B. 1910. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Intern. Med. 6: 517–521.

Pauling, L., Itano, H. A., Singer, S. J., and Wells, L. C. 1949. Sickle cell anemia: A molecular disease. Science 110:543–548.

Ingram, V. M. 1957. Gene mutation in human hemoglobin: The chemical difference between normal and sickle cell haemoglobin. Nature 180:326–328.

Eaton, W. A., and Hofrichter, J. 1990. Sickle cell hemoglobin polymerization. Adv. Prot. Chem. 40:63–279.

Weatherall, D. J. 2001. Phenotype genotype relationships in monogenic disease: Lessons from the thalassemias. Nat. Rev. Genet. 2:245–255.

Tsaras, G., Owusu-Ansah, A., Boateng, F. O., and Amoateng-Adjepong, Y. 2009. Complications associated with sickle cell trait: A brief narrative review. Am. J. Med. 122:507–512.

Globin-Binding Proteins and Other Globins

Helbo, S., Weber, R. E., and Fago, A. 2013. Expression patterns and adaptive functional diversity of vertebrate myoglobins. Biochim. Biophys. Acta 1834:1832–1839.

Kihm, A. J., Kong, Y., Hong, W., Russell, J. E., Rouda, S., Adachi, K., Simon, M. C., Blobel, G. A., and Weiss, M. J. 2002. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature 417:758–763.

Feng, L., Zhou, S., Gu, L., Gell, D. A., Mackay, J. P., Weiss, M. J., Gow, A. J., and Shi, Y. 2005. Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature 435:697–701.

Yu, X., Kong, Y., Dore, L. C., Abdulmalik, O., Katein, A. M., Zhou, S., Choi, J. K., Gell, D., Mackay, J. P., Gow, A. J., et al. 2007. An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. J. Clin. Invest. 117:1856–1865.

Burmester, T., Haberkamp, M., Mitz, S., Roesner, A., Schmidt, M., Ebner, B., Gerlach, F., Fuchs, C., and Hankeln, T. 2004. Neuroglobin and cytoglobin: Genes, proteins and evolution. IUBMB Life 56:703–707.

Hankeln, T., Ebner, B., Fuchs, C., Gerlach, F., Haberkamp, M., Laufs, T. L., Roesner, A., Schmidt, M., Weich, B., Wystub, S., et al. 2005. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J. Inorg. Biochem. 99:110–119.

Burmester, T., Ebner, B., Weich, B., and Hankeln, T. 2002. Cytoglobin: A novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19:416–421.

Zhang, C., Wang, C., Deng, M., Li, L., Wang, H., Fan, M., Xu, W., Meng, F., Qian, L., and He, F. 2002. Full-length cDNA cloning of human neuroglobin and tissue expression of rat neuroglobin. Biochem. Biophys. Res. Commun. 290:1411–1419.

B7