Acceleration due to gravity (\(g\) is positive)
{"title":"x and y coordinates at time t of an object in projectile motion","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"rect\",\"coords\":\"34,9,61,34\"},{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"41,57,60,84\"}]"} {"title":"x and y component at t=0 of the object's velocity vector","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"150,11,168,29\"},{\"shape\":\"rect\",\"coords\":\"143,55,162,79\"}]"} {"title":"Time at which the object has coordinates x and y","description":"Wrong","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"183,7,203,32\"},{\"shape\":\"rect\",\"coords\":\"180,53,196,80\"},{\"shape\":\"rect\",\"coords\":\"278,48,293,78\"}]"} {"title":"Acceleration due to gravity (g is positive)","description":"Correct!","type":"correct","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"264,50,277,78\"}]"} {"title":"x and y coordinates at t=0 of the object","description":"Incorrect","type":"incorrect","color":"#FF6600","code":"[{\"shape\":\"rect\",\"coords\":\"90,11,111,34\"},{\"shape\":\"rect\",\"coords\":\"91,59,118,85\"}]"}We can use another equation from Chapter 2 to write down the equations for the projectile’s \(x\) and \(y\) coordinates \(x\) and \(y\) at any time \(t\). We let \(x\) and \(y\) be the projectile’s coordinates at time \(t=0\). Because the \(x\) component of acceleration \(a_x\) is constant, we know that \(x = x_0 + v_{0x}t + (1/2)a_xt^2\) from Equation 2-10 in Section 2-5. The same equation rewritten for the \(y\) direction is \(y=y_0 + v_{0y}t + (1/2)a_yt^2\). For projectile motion \(a_x = 0\) and \(a_y = -g\), so these equations become: