Chapter 6. Kinetic energy (6-8)

Question

EF91qmJ9wW/f089WONAkR5FnY6KcgDJM17SQp4/7H9MHZkqP8AG7XvHXyN4=
{"title":"Kinetic energy of an object","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,32,42,83\"}]"} {"title":"Mass of the object","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"165,46,214,82\"}]"} {"title":"Speed of the object","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"215,46,245,79\"}]"}

Question

tukRiJTX52EE6YABcPCXAeWMpUtVIXvLeM0IQW9dwkCp65+N
{"title":"Kinetic energy of an object","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,32,42,83\"}]"} {"title":"Mass of the object","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"165,46,214,82\"}]"} {"title":"Speed of the object","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"215,46,245,79\"}]"}

Question

UGQ1FidPNaqn2Jd9ImnbQQHjVN2/+kC9oyWbKPtj+R2VsibG
{"title":"Kinetic energy of an object","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,32,42,83\"}]"} {"title":"Mass of the object","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"165,46,214,82\"}]"} {"title":"Speed of the object","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"215,46,245,79\"}]"}

Review

The right-hand side of Equation 6-7 is the \(\textit{change}\) in the quantity \(\frac{1}{2}mv^2\) over the course of the displacement (the value at the end of the displacement, where the speed is \(v_f\), minus the value at the beginning where the speed is \(v_i\)). We call this quantity the kinetic energy \(K\) of the object: