Chapter 10. Relationship between orbital period and radius for a circular orbit (10-12)

Question

VEU+Aj+6na1f08GbFXnoXZdo7u8LfLQnlm77GNSlcZXLwRohzNis2E6Jyb5imoO7q/uVww==
{"title":"Period of an Earth satellite in a circular orbit","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"1,48,28,82\"}]"} {"title":"Radius of the satellite's orbit","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"264,59,285,90\"}]"} {"title":"Mass of Earth","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"rect\",\"coords\":\"139,91,177,115\"}]"} {"title":"Gravitational constant","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"109,82,136,112\"}]"}

Question

ls8rQUdhHdvt0fIgoZ9jJ35BE/YzOa5KZvlvkmG00sghAUrd
{"title":"Period of an Earth satellite in a circular orbit","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"1,48,28,82\"}]"} {"title":"Radius of the satellite's orbit","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"264,59,285,90\"}]"} {"title":"Mass of Earth","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"rect\",\"coords\":\"139,91,177,115\"}]"} {"title":"Gravitational constant","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"109,82,136,112\"}]"}

Question

TM0dSxyPSXvahHDc99hxQx7dHu8=
{"title":"Period of an Earth satellite in a circular orbit","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"1,48,28,82\"}]"} {"title":"Radius of the satellite's orbit","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"264,59,285,90\"}]"} {"title":"Mass of Earth","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"rect\",\"coords\":\"139,91,177,115\"}]"} {"title":"Gravitational constant","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"109,82,136,112\"}]"}

Question

2f0JqE4qJLZtiEw9M5xt/VAGtr3n12E9YgqnGA==
{"title":"Period of an Earth satellite in a circular orbit","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"1,48,28,82\"}]"} {"title":"Radius of the satellite's orbit","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"264,59,285,90\"}]"} {"title":"Mass of Earth","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"rect\",\"coords\":\"139,91,177,115\"}]"} {"title":"Gravitational constant","description":"Correct!","type":"correct","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"109,82,136,112\"}]"}

Review

Another useful way to describe how rapidly a satellite moves around its circular orbit is in terms of the \(\textbf{orbital period}\), which is the time required to complete one orbit. In uniform circular motion the speed \(v\) is constant, so the orbital period \(T\) is just the circumference \(2\pi{r}\) of the orbit (the distance around the circular orbit of radius \(r\)) divided by the speed: \(T = 2\pi{r}/v\). Using Equation 10-11 for \(v\), this becomes

\(T = \frac{2\pi{r}}{v} =2\pi{r}\sqrt{\frac{r}{Gm_{\mathrm{Earth}}}}\)

It's convenient to square both sides of this equation so as to eliminate the square root. Note that the square of \(r\) is \(r^2\) and the square of \(\sqrt{r}\) is \(r\), so we end up with a factor of \(r^2 \times r = r^3\) on the right-hand side of the equation: