Chapter 13. Mach angle (13-37)

Question

b9esJsCwXqPgSH1/5kznRLzmcu51356VmZ/7LPloti+Y5uJ1JrZnLGtGF6Zu2gMmjQ+t+Q9qbc4=
{"title":"Angle of the Mach cone made by a supersonic airplane","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"64,38,84,67\"}]"} {"title":"Speed of sound","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"173,9,200,38\"}]"} {"title":"Speed of the airplane","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"165,67,185,92\"}]"}

Question

THsBaBOoo2uDKGx5wvBQKg/jLA8=
{"title":"Angle of the Mach cone made by a supersonic airplane","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"64,38,84,67\"}]"} {"title":"Speed of sound","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"173,9,200,38\"}]"} {"title":"Speed of the airplane","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"165,67,185,92\"}]"}

Question

e+zOSzbiYpLBGh8AnydpOHEK9lK0FNsvv4EpaA==
{"title":"Angle of the Mach cone made by a supersonic airplane","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"64,38,84,67\"}]"} {"title":"Speed of sound","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"173,9,200,38\"}]"} {"title":"Speed of the airplane","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"165,67,185,92\"}]"}

Review

The angle of the Mach cone depends on the airplaneā€™s speed, which we call \(v_{\mathrm{airplane}}\). To see how to calculate this angle, inspect parts (a) and (b) of Figure 13-27. In a time \(\Delta{t}\) the airplane travels a distance \(v_{\mathrm{airplane}}\Delta{t}\); this is shown by a blue line in Figure 13-27a and Figure 13-27b. The distance \(v_{\mathrm{airplane}}\Delta{t}\) forms the hypotenuse of a right triangle, one leg of which is the distance \(v_{\mathrm{sound}}\Delta{t}\) that the sound travels in time \(\Delta{t}\). The sine of the angle \(\theta_{\mathrm{M}}\) in Figure 13-27b, known as the \(\textbf{Mach angle}\), equals the side opposite this angle (\(v_{\mathrm{sound}}\Delta{t}\)) divided by the hypotenuse (\(v_{\mathrm{airplane}}\Delta{t}\)). The factors of \(\Delta{t}\) cancel, leaving