Chapter 14. Change in volume due to a temperature change (14-19)

Question

Pm1m47nHb/QIEII/5BorsmuWnwbjdAEXa/3V/9X/6U+CHdVSbfXLoqlSXwvvzTGv/4A8pA==
{"title":"Change in the volume of a quantity of substance","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"2,4,68,45\"}]"} {"title":"Volume of the substance before the temperature change","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"181,8,209,45\"}]"} {"title":"Temperature change of the substance that causes the volume change","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"233,3,301,52\"}]"} {"title":"Coefficient of volume expansion of the substance","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"142,4,178,56\"}]"}

Question

oNis+RyzrLOmuTjpGM7/LEOrHURKyyvjhrL21Jhtp14QRrx9Bgwq8Ow1EOy1jBqrE3PRxemT859EvgGC
{"title":"Change in the volume of a quantity of substance","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"2,4,68,45\"}]"} {"title":"Volume of the substance before the temperature change","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"181,8,209,45\"}]"} {"title":"Temperature change of the substance that causes the volume change","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"233,3,301,52\"}]"} {"title":"Coefficient of volume expansion of the substance","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"142,4,178,56\"}]"}

Question

riZPakkhzY7GUAiJ73vy9xa/htrfPaUzXHvn4MADyypwoVdseNYdmss4JLKvnCU5GkhOr27pXADD/uobhx79Pw==
{"title":"Change in the volume of a quantity of substance","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"2,4,68,45\"}]"} {"title":"Volume of the substance before the temperature change","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"181,8,209,45\"}]"} {"title":"Temperature change of the substance that causes the volume change","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"233,3,301,52\"}]"} {"title":"Coefficient of volume expansion of the substance","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"142,4,178,56\"}]"}

Question

+hZLdjQoeohZsEs613rf6//l1i3Dxvas8CsdXUlN1lvgRHLm+juDq3nHUTnOeFbhqksSCQ==
{"title":"Change in the volume of a quantity of substance","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"rect\",\"coords\":\"2,4,68,45\"}]"} {"title":"Volume of the substance before the temperature change","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"181,8,209,45\"}]"} {"title":"Temperature change of the substance that causes the volume change","description":"Wrong","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"233,3,301,52\"}]"} {"title":"Coefficient of volume expansion of the substance","description":"Correct!","type":"correct","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"142,4,178,56\"}]"}

Review

When the temperature of a solid object changes, its length, width, and height change according to the linear thermal expansion relationship of Equation 14-18. As a result, its volume expands as well. A fluid (a liquid or gas) has no fixed dimensions, however, so Equation 14-18 doesn’t apply, but fluids also change their volume when the temperature changes. An equation that describes the volume change with temperature for solids and fluids alike is

The coefficient of volume expansion \(\beta\) (Greek letter beta) also has units of \(\mathrm{K}^{-1}\) or \((^{\circ}\mathrm{C})^{-1}\).