Chapter 16. Magnitude of the electric field due to a point charge (16-4)

Question

Jacq5a0hngxITrkhYBHnUat7NIld5v5rhLC93b6ckK9HpdpHdpfPmnfQWwi3euSRq14IcG7Vab17yR2fP31pfg==
{"title":"Magnitude of the electric field due to a point charge Q","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"5,50,40,94\"}]"} {"title":"Coulomb constant","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"125,2,160,49\"}]"} {"title":"Absolute value of charge Q","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"175,3,225,64\"}]"} {"title":"Distance between point charge Q and the location where the field is measured","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"153,98,183,135\"}]"}

Question

O/vKXcQmzlU6zTGNJD/cTVj80sI=
{"title":"Magnitude of the electric field due to a point charge Q","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"5,50,40,94\"}]"} {"title":"Coulomb constant","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"125,2,160,49\"}]"} {"title":"Absolute value of charge Q","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"175,3,225,64\"}]"} {"title":"Distance between point charge Q and the location where the field is measured","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"153,98,183,135\"}]"}

Question

nAul2cmbdngDpDBY/LvgcHOFFZAXE089ufs+V7mDi0lXfL6y
{"title":"Magnitude of the electric field due to a point charge Q","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"5,50,40,94\"}]"} {"title":"Coulomb constant","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"125,2,160,49\"}]"} {"title":"Absolute value of charge Q","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"175,3,225,64\"}]"} {"title":"Distance between point charge Q and the location where the field is measured","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"153,98,183,135\"}]"}

Question

nivvUjp7PUTxssbOcOPi21KHaqvonTiA+BDYSatT0rE7wCkaSjU/QmOGPbyfeuPV4Bt+kKMDU5c2xyJEecVhT9pFzBUXtrXVM8eehW4q8BQxuDWE
{"title":"Magnitude of the electric field due to a point charge Q","description":"Incorrect","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"5,50,40,94\"}]"} {"title":"Coulomb constant","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"125,2,160,49\"}]"} {"title":"Absolute value of charge Q","description":"Wrong","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"175,3,225,64\"}]"} {"title":"Distance between point charge Q and the location where the field is measured","description":"Correct!","type":"correct","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"153,98,183,135\"}]"}

Review

We can use Coulomb’s law, Equation 16-1, to write an expression for the magnitude of the electric field due to a point charge \(Q\). If we place a test charge \(q\) a distance \(r\) from charge \(Q\), Equation 16-1 tells us that the magnitude of the Coulomb force on \(q\) is \(F = k\left|q\right|\left|Q\right|r^2\). From Equation 16-2, we can also write this force magnitude as \(F = \left|q\right|E\), where \(E\) is the magnitude of the electric field due to charge \(Q\) at the position of test charge \(q\). Setting these two expressions for \(F\) equal to each other, we get

\(\left|q\right|E = \frac{k\left|q\right|\left|Q\right|}{r^2}\)

or