Chapter 19. Magnitude of magnetic force on a moving charged particle (19-1)

Question

NCUrtsQnBRd5Bi0Yyj/eRPU86evd3/B1D4qErGEhtjmJYbX5lqAmJstgtIZ6hK5VuL3jrrs28S3PCCuguHtj17+PFb9ZenUV8o5K30OS8Q7/OJw7
{"title":"Magnitude of the magnetic force on a moving charged particle","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"1,4,34,49\"}]"} {"title":"Magnitude of the magnetic field","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"159,8,190,48\"}]"} {"title":"Angle between the direction of the particle’s velocity \\vector v and the direction of the magnetic field vector B","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"268,6,297,48\"}]"} {"title":"Speed of the particle","description":"Incorrect","type":"incorrect","color":"#ff0000","code":"[{\"shape\":\"rect\",\"coords\":\"132,16,158,49\"}]"} {"title":"Magnitude of the particle’s charge","description":"Incorrect","type":"incorrect","color":"#800000","code":"[{\"shape\":\"rect\",\"coords\":\"95,17,122,57\"}]"}

Question

BxwqFElCMrv6osRQIzwEy9NfZ7O5DiHi8cUDjelh1iClRv7W
{"title":"Magnitude of the magnetic force on a moving charged particle","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"1,4,34,49\"}]"} {"title":"Magnitude of the magnetic field","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"159,8,190,48\"}]"} {"title":"Angle between the direction of the particle’s velocity \\vector v and the direction of the magnetic field vector B","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"268,6,297,48\"}]"} {"title":"Speed of the particle","description":"Incorrect","type":"incorrect","color":"#ff0000","code":"[{\"shape\":\"rect\",\"coords\":\"132,16,158,49\"}]"} {"title":"Magnitude of the particle’s charge","description":"Incorrect","type":"incorrect","color":"#800000","code":"[{\"shape\":\"rect\",\"coords\":\"95,17,122,57\"}]"}

Question

34o5Qqd6BWWLpfUC2JKS9NHmxEyAhMAQR54jCWN4Qlp9l2JJw2nsgnFeUNC7OieuinoHVAkte+AgrpvJ2/+Fc0yZYS1+UUnkQBOJbelBMBn87xLT0JdxzdT30i8UAL5jvHnFQS5KAGu/tc/NQ1E7PKmw6SPFVo8Z5F1u9g==
{"title":"Magnitude of the magnetic force on a moving charged particle","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"1,4,34,49\"}]"} {"title":"Magnitude of the magnetic field","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"159,8,190,48\"}]"} {"title":"Angle between the direction of the particle’s velocity \\vector v and the direction of the magnetic field vector B","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"268,6,297,48\"}]"} {"title":"Speed of the particle","description":"Incorrect","type":"incorrect","color":"#ff0000","code":"[{\"shape\":\"rect\",\"coords\":\"132,16,158,49\"}]"} {"title":"Magnitude of the particle’s charge","description":"Incorrect","type":"incorrect","color":"#800000","code":"[{\"shape\":\"rect\",\"coords\":\"95,17,122,57\"}]"}

Question

yDj9YUaH8ArllUjlkwvcrdg/iBMRXfd/1I1bQA==
{"title":"Magnitude of the magnetic force on a moving charged particle","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"1,4,34,49\"}]"} {"title":"Magnitude of the magnetic field","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"159,8,190,48\"}]"} {"title":"Angle between the direction of the particle’s velocity \\vector v and the direction of the magnetic field vector B","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"268,6,297,48\"}]"} {"title":"Speed of the particle","description":"Correct!","type":"correct","color":"#ff0000","code":"[{\"shape\":\"rect\",\"coords\":\"132,16,158,49\"}]"} {"title":"Magnitude of the particle’s charge","description":"Incorrect","type":"incorrect","color":"#800000","code":"[{\"shape\":\"rect\",\"coords\":\"95,17,122,57\"}]"}

Question

n+Nu8NY3OgydiKDbQI6Kxb4FI6WrA9D6ZX+yOGQRM8tVTI6cWmW2VA==
{"title":"Magnitude of the magnetic force on a moving charged particle","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"1,4,34,49\"}]"} {"title":"Magnitude of the magnetic field","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"159,8,190,48\"}]"} {"title":"Angle between the direction of the particle’s velocity \\vector v and the direction of the magnetic field vector B","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"268,6,297,48\"}]"} {"title":"Speed of the particle","description":"Incorrect","type":"incorrect","color":"#ff0000","code":"[{\"shape\":\"rect\",\"coords\":\"132,16,158,49\"}]"} {"title":"Magnitude of the particle’s charge","description":"Correct!","type":"correct","color":"#800000","code":"[{\"shape\":\"rect\",\"coords\":\"95,17,122,57\"}]"}

Review

The SI units of magnetic field are tesla (T). In Equation 19-1, if charge \(q\) is in coulombs (C), speed \(v\) is in meters per second (m/s), and magnetic field magnitude \(B\) is in tesla (T), the force \(F\) is in newtons (N). So \(1\ \mathrm{T}\) is the same as \(1\ \mathrm{N}\ \cdot \mathrm{s} / (\mathrm{C} \cdot \mathrm{m}\)) or \(1\ \mathrm{N} /(\mathrm{A} \cdot \mathrm{m}\)). (Recall that one ampere equals one coulomb per second: \(1\ \mathrm{A} = 1\ \mathrm{C}/\mathrm{s}\).)