Chapter 23. Critical angle for total internal reflection (23-10)

Question

CsVvv6E60R6fIgRkkrTxDC4Rep4WinRedB8GgNaYOS2TC5npwz0nFfBkySMJIwAgrRSswXc3Ec+j52XUqUtB8bYHqBryzmFAD1OA7spji/YGVoVm5ZVOzMeFsmvNByWxl7rYQZ8VwGw7XEJgwkU0yw7dUJo=
{"title":"Critical angle for light in medium 1 that encounters a boundary with medium 2 with a lower index of refraction","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"4,46,31,86\"}]"} {"title":"Index of refraction of medium 2","description":"Incorrect","type":"incorrect","color":"#008000","code":"[{\"shape\":\"rect\",\"coords\":\"234,18,259,44\"}]"} {"title":"Index of refraction of medium 1","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"231,77,264,104\"}]"}

Question

7fEYLnTXYIdx1jX92tJKxkK4MRPpd+p5Qv8fD9To1bS8Nd9g
{"title":"Critical angle for light in medium 1 that encounters a boundary with medium 2 with a lower index of refraction","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"4,46,31,85\"}]"} {"title":"Index of refraction of medium 2","description":"Correct!","type":"correct","color":"#008000","code":"[{\"shape\":\"rect\",\"coords\":\"234,18,259,44\"}]"} {"title":"Index of refraction of medium 1","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"231,77,264,104\"}]"}

Question

Gv6scJsrnRWjdSAwCrM+PpiDYxZ/rICGT8u+7dL5vHGRtr76
{"title":"Critical angle for light in medium 1 that encounters a boundary with medium 2 with a lower index of refraction","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"4,46,30,86\"}]"} {"title":"Index of refraction of medium 2","description":"Incorrect","type":"incorrect","color":"#008000","code":"[{\"shape\":\"rect\",\"coords\":\"234,18,259,44\"}]"} {"title":"Index of refraction of medium 1","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"231,77,264,104\"}]"}

Review

We can calculate the critical angle \(\theta_{\mathrm{c}}\) using Snell’s law of refraction, Equation 23-6.When the incident angle \(\theta_1\) equals the critical angle \(\theta_{\mathrm{c}}\), the refracted angle \(\theta_2\) equals 90°.If we substitute these into Equation 23-6 and recall that sin 90° = 1, we get

(23-9) \(n_1 \sin{\theta_{\mathrm{c}}} = n_2 \sin{90^{\circ}} = n_2\ \mathrm{so}\ \sin{\theta_{\mathrm{c}}} = \frac{n_2}{n_1}\)

Note that the sine of an angle between 0 and 90° is between 0 and 1. If \(n_1 > n_2\), the ratio \(n_2/n_1\) is less than 1, and there will be some angle \(\theta_{\mathrm{c}}\) for which Equation 23-9 issatisfied. In this case total internal reflection is possible. But if \(n_1 < n_2\), the ratio \(n_2/n_1\) isgreater than 1 and Equation 23-9 has no solution. This is another way of seeing thattotal internal reflection is possible only if \(n_1 > n_2\).

If we solve Equation 23-9 for the critical angle \(\theta_{\mathrm{c}}\), we get