Chapter 25. Einsteinian expressions for kinetic energy and momentum (25-20)

Question

E/mA9+bzUxrVlDrxQpW/U8MhzsqSm0FiO5LoqD+6+poKh9Dp/7TBJNl3lG8FNEfaVz/awIk+Q8qH/E9fPPuSbv9TmEn479N3b9DEb9E2PaCnG5yUKtH8/w==
{"title":"Kinetic energy of a particle of mass m and velocity vector v","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"2,16,38,60\"}]"} {"title":"Relativistic gamma for speed v","description":"Incorrect","type":"incorrect","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"102,26,131,66\"},{\"shape\":\"rect\",\"coords\":\"78,120,109,159\"}]"} {"title":"Momentum of a particle of mass m and velocity vector v","description":"Incorrect","type":"incorrect","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,122,24,162\"}]"}

Question

rHgMYyf141u7KfQNR0exaKuPEISsQgj+yNgkKgb2qzVFMMwECa2ZRPuvRA8JrbGrbniWN/4NL54=
{"title":"Kinetic energy of a particle of mass m and velocity vector v","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"2,16,38,60\"}]"} {"title":"Relativistic gamma for speed v","description":"Correct!","type":"correct","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"102,26,131,66\"},{\"shape\":\"rect\",\"coords\":\"78,120,109,159\"}]"} {"title":"Momentum of a particle of mass m and velocity vector v","description":"Incorrect","type":"incorrect","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,122,24,162\"}]"}

Question

7jnIKxPs5S461UMmDzE2BNUK/iHC9TyvDeYTBhjMnuDv8EXIhqDPgNfBGfak9jj9GbXexcM3vihgTEg4jbf5qHb9xivYbfGqq1p3XS5vbXXXoXeqeLgKioI6/Zs=
{"title":"Kinetic energy of a particle of mass m and velocity vector v","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"2,16,38,60\"}]"} {"title":"Relativistic gamma for speed v","description":"Incorrect","type":"incorrect","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"102,26,131,66\"},{\"shape\":\"rect\",\"coords\":\"78,120,109,159\"}]"} {"title":"Momentum of a particle of mass m and velocity vector v","description":"Correct!","type":"correct","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,122,24,162\"}]"}

Review

The dimensionless quantity in Equation 25-19 is equal to 1 when \(v = 0\) and becomes infinitely large as \(v\) approaches \(c\) (Figure 25-13). In terms of relativistic gamma, we can write the correct expressions for kinetic energy and momentum as