Quiz for Document 19-2: Frederic Howe, The City: The Hope of Democracy (1909)
Reader Quiz
Chapter 19b
true
true
Select the best answer for each question. Click the “submit” button for each question to turn in your work. Click the "Previous" button to navigate back if you need to view the textbook.
Question
1.1
lbORUZk8+SgnKjvZ/CrE/C1jch3UYAGoFUq+AGIaaMTusQQS+TD1Wl5S6nt7CPtgP2pofay13wKnZs8cLLaUWVEIpwzvYZPTtYnSkeYOzw6bkoxFjFrgtD0c3JyS2f3UFVitRyV1dMMQ5NA6nWBwrHcfVWQiwK4q6IA9+bz5jptKOMIy0vX78LFLXI68EQ7+o6lJxTIre9ZVTuvAWnPWLT6GI+rGRe9jBNOeQHjgw4A1wQHvuxqNVIgMmwSBXAru85LE2x8f7Pn7CvgZeD7dQ2mKUoooyscLKoiefOYpYsHC4T/xVBpHnLsGpzn8DwQzlzZvIIfbnH5tPAjbn0If9q7FIEYmQ59Gs1xZCvtHmJLpTrlSZrAsGSUyKIlDj5n8EHxKffKIzwc8S6/Jc0ep86FsxuWOnPnaL9RcBJ6ZOJtgJueKVZlvqOCl+Cb7Kiu0/Wt6Yjvx/bSboz2sB7eiSrKhW3Mkfq9b5UGIaLIV8ZkJEGbgP/C/ipj0BGsdRG0kn4tjNfe5BtwFftpuquWh3SgSGYQ//FMAzkCheW8GhfMnB3IjLJpYzvhxyZOVuEMJS7IPD+m4OYtrcbqQxxYAC66x1N3jq2jNp8wVApyRGQxeZeIowXi832lmwOji8KczH0SPfFCqU6e6bQ6FOv0vl3VRPT8+ZQVTIi1/32jVyg/wOGTU60gA25DM38KBeuEIbZZTOHvRhCtKLCZ69NlYI0aDNKmkn9BQd5R32mrBW0LwPor2Gcnnx247vbL234lfh1MntVbB3iPfxVEE/jPGwrRVSqP/M+qt5Iz26fY3+8i4dX6dJ4+GVguAs9A9NYvWtrYE2C2j9Az7ZnxLIhZWnZzd08bbSKy13PNmYqdLBlafnhniQsZOTvfRs2LnbCIQBbLB1SZirWWAgM7oKHyM1BNxjrCl7sdouBD4F6RsBkryc07vA3jryIzUheWIafUBBhk5S/ZQSFYXy1GyWvC7HW5wv2cg9kBcctzVZsn7tQJnAtrnL1mS8bfAdoOZ045IZi9wXg/vIa/Oa/2MT5Lv4nIfEVbrgoTJXcMaL6VwYDKdjpvqKQcogKnGqHtalsnyFZTAoBGFJRxuoUsr/Mr2N5wo7o2br5WGB4UUVf3++yFBxmpNWIUsBmC1PEYdyDcaNvBwV3JRSQQXgVTt899hf05Wa4utsqHccR56NMXulpbJ7bG3pzuSiI68n7esHUTWEdWGv4JPjlbyf2yp4Xun7uz7Y9t/KRmvURj5BsuCm17sOazaJDea2hBeyZU5pYerNvs10axLvnjuPkHAI5CCIbE0TLqM0TTy/erKj9YY0DbPOAezIFNlECVKBKDj/D3YVbS73js4SFc4Ajz7WcyOSQ2eaaO2Z6vWHq/VeqeqmANaVYpiF3q7vwYM8KA+jmlacW+1R55kYjAovDdo564v/p2vKj0Xkh6krKr0INknT1+ZXmdh9EApEWErDkD+aWozLP5CMwC4JdfqGVA7bGbi5c2yHgtAqIqw7BxEyEV7HzZtHG6FnARlALndA0r0RDjdqU9qZxiAuaqs9cbz0wlVyEQL7zpxAI8oGPQRBtmATB8I0tHDFivchH2bGotKVzEyiQoBPSFExO42OyYQwTzz9+d+3UiHzVRTYc1t8OwTcX2slmyuIFGECA3IRdQEwVcnXFpDJw5RBQM1PEF2eHzKzAQZ/tqImmMcH7pQ9IYya6gYMzB22CiWtyTCuEspzmPyt85GK8Re5bbQ961eK/kqsWn4jmVCCKkgwgqgrveaM+W7kwUYuDExXfWYFBJ3d5ZR6SzJ7RPmLRz1EWoLIQuyPUVPPcKM1dJRuWdbBFbIHhYpziX6umnndzuFwrnOLIEwVlGDuMI/mqUjOvBxjRsoRhvloHwkbOVABzjtAdusUcmIIFTt95FVPFDhRQkoN/7ky06nyoTOeEsJ083j7AukaM+dYH83mpeqhWUYBA1DUWewRxUjF4zU2OPcY1kBQUZglEOfjZBRtthssMy6nZ73+907XsBgM2fFWmwc9N+/6GVPVW3AYOQwf1Bux+JHk1qahEFGsfR/ZhWcah6dweXIkCFdOajI+8bb76RePECahS5I5Av1oIcaZ/7IOZcD0dhHP3V+Z3NEjzLqvRnq5CMWIU2FCtIsQ97W3b93sUhH4OEkmuqMSvP9L0h82m/jd9p0mcsedXGjpGcK023SiUK/2WzPrKY/Pcu+kILNfbecryyGnVf5gIS7jdmUYRbpjslp+HQaHuwnqAqI60pw/Jc9vQnXgIdaTgPfGPI56f3jp4zy5ipucmTrmw4j7yCxmwfdXdyrH6CUjwp6xT2+Q9uOcdZDHdCbahPeztckJ90jDLptWT5k4m2bIXv96jXl4tG1g8z7KH8l2eBdFNLsp2D0aIvgCcN+RntwuW0PRcz697w35cDy+L0/aDhsHa7WLK0AaBe9Lgrz3qqtVuOmjyrmlfWjD8HoCESk2aCNlJliR1wskAeETWB6EO6AumoPKjAvT30p/Uh1rgb79GScxQ54GUp2OskhHRil22jn7ABibird+mStSPVckUH7u2yoi+pWviAyWB+pF0k8m9F1cLwJhnY6WlxptFqwngKfl9e4cA6yzj/SlnogTafwfHl/Ugbbib8jcCKdvPJeGkiKeqc2D+ejob7CEgYFpKE0pdWlrp0HIq6Iuf3rFiw8lxkpokvD41QOb+iDRxCayhjoumwOg5E6ch0wlX/VdKvhYkOHv02PkY1NWS52gPm/KOqQ2UUIWqYxUuLZODvlxAsp1WQ3MuQW2fsx5//HAYtcM8T+PCfz1DwWOTRsL245KGPsAdiXGXP57O3qqubSLFQ/Z2+6VxCoy3WtzqttWQx6vT83Ez4NhmMI/syNd2+hjvgBOXMOI373e0ZTzDqQtP1A1tL4xp37TvWUScSU2suWrZjmLxSEKtUFwYD1LJ3VJ3Fhul1HuXvktUg35TLDKBqEQOzljq1B7JvAzUg7z4nR8w/cni+vSyItXCOx+0DGphieKpqPm9YKsEFN536luz4qdGQWpsbTBbl15pHLbm/AFg==
Question
1.2
q6vKmXVjlrb2T/RAmWJBYEZtgsWQu2rCUXLsRhRaR5U8reQaSDQXjmN0X+TWjWGCn2txuPTqWJoOv23wP9w6kisQJuHAV3R0dbmVC/L5QHx2IGUWMR/lygqa2KemTmtIxpVpCyjHqJwYQ7F/5OGVyjyZgbTiPA4Bf0ZQJyTxcRhwvFODjC3hKnlERm8LuKT/+fi+Y1DmVZwnAlQM/wMAWjxxZr6DDsl5GPiDp9egb1ChBSVuqvclLNNrCyTRv/65yKhH6xRmc4pqC9rfixyVfxoa+YsobXFdB8U48l1NiTd12UCfg1xhSK+ryWcQuu3m0N++q26qkNBpFFpINHXYD6m4/7grceyo+oY08iNcb01+f4sMEDmTKHFZftsa3+C4Nud4+Mi7ZNBFN6CbumLahEeGRIeJQ9qdjUYU7NG8Nfd3zed/t1vMA/RXoM/18IWoQ451+QmC7XhDnSjVnswXLj4PuHUrqnx+h83EY6DenJgAnAU6HIzgvcvwsysdC05mmaJqwdtydqAfTsLkfat+b56/c58haXiCIBVAflDJ0kW0IAyC2zcnJ03LskhfFfRhaF2aRH5AHQTRy4SGsy/vqsHMWMsfYt3lZD3851F+MAaE5kUP1aS+61ZGDwZP9GNjPHwmlbtEe4RdvlVYikVsOokteFoPeWEMAG28bi6IUFcTwdNub1UsZw9b2PEn7uw4lSuZ5wZS7n0GnhNWrC/2bTWIlUkBFfaMtjLigqnzvYf6uxbZj+qSuHRMSW70xmEV+6Vfj0M9JM6BRX6QRyQ3JVzvvkEkjKfDMRxot+nHDnB+CV1EMn94PEzv1C4MiDbczjpeh3hJ7yrUJYlu35KTw48cKPyL3y6GO+OIjIHdyQNhpR3GM+SPxHKTyQXDG7RTN5VLxl2obW/oPnviBlLG5hCnA9nJQrsbeEU4VW4175memHhUgnZdvRfJ8ZQ05EzCG22sswUWAMfgJBhEKJmWA3bmo7CR/j5A/edCtWwH1wBoHs6WKcptmz0t2UQiR9qV7fNY7mBSniniCjVooPPj++rlS5X/HNe0XPfB8jZ46hGaFy2Js8nEhnI2W6vJ2aVshQ7Dr9hBrQ4Wvxee95TC3Ofy9/vhwfLlAXk4sxiRvuII7v+DfFIB6iTGHGnBRq9QISbnk/s9nDgdZlj8E78iCvuct1OSzz5/mgwU+vuVlISzTVnJAKbm0OnQnmTPBVt6lfCmyFkmETFFby0Fw8KPMzGZqoQBSHrb9MtV49JJO1t24uyhfuXwAErtYjso97FpLzaFYfCSyulTObWOcP0J0ZEiXMhDIml0CHsDpSGNqWrmyc1GAJpV5MuhERrCs1RnF5kJ9Hv4HEUwIc6LO2GYBWu1X0BhzNNiHrTcC1e+1klXjjRY7ntPIW9m+XFD3/dke+nxdnyDYuZTHGVWsggZ+nQ4IUvheP+MiULz1hr0WKkWN/8a5SbTOXAToOOusfXwfR87EHZGrTycKdaEv+D8Zoz2D2BQOaTmJ4iIyV9Gnw0DBRidyOzzJEC0vWEg7ctPfkmjPrmjQy2xM5c4DiXBnD/QYFAOzv621NvDZCwn74s9dhQgiL2Ktxtlvzw6FAKSsNJACPDWfQV9UKf0uQm8RmAzZQ5Ie9yuerME7sk8S7dAsfhP6RhjQg+EOa6icLA2mJsKV20A0NDNOV5JYd46sAlAvGc7gG+b5DbifLA5OBYUCa/wcV21m1CoSLXXpOWFKalNySFWr/oumSVkYUqyMxxOvNVins77KFXPHOVYl+vQFEFSZEzxolIaFTZdtfTG9TMBn75tSXrcJGt6B9tJ07MgUMpI28+sGnANxb437Eg6B/TNo54ylaCB/Jsu/Fviliz8ERpPREfu6K46K2f+iB0EgcuMim1be0k9TNnPwITXctGPjgAJwXZikuTJMlmlFYbLiGEdoyrqdMbgi4c7R36oUfMVPtowykXLn8TBCEdT/bqLJPclLnNX6F5OraiEy2n5wHdwno2GmqxlNcObS+W6Jy2rE4gNydAM7L95rcAF7YLdV9umPYwPIf8rK+Gket6qSChrk/8r1prJYPNyZRfuWLMyb54rmp4lUZPxNym2jSKnf4pSG0lVQXACsPIzt+E1GATQDYH1wkFit+K+5n3R4TX9CCPM6PGBB4J8404bkxKQRSY5Keszum89Groc+P3Ymp4se776LR9/ITmjTfXEYHiGDZvg3NgOOMMJCba7ZlVMulqQWx9LMGzIR8Nt6E4VmLL37//+0Pta1emfiNYeOmpd13kP2yx6uAaNT0rMzFjaVJHzHC6vSRZu3+DZYAkA6fIe7JqFQUnjQwQkvipERZEfrnY1YrKUatgFohVphExfLF1SBWyxB+YpknYOomRIHtTi8cKMwVXh2MvGvvJonrHvzxMR2FJYOxRKTrHaLvHWmRriB+RRcQzym5xh1TZaj3350xhYTDkYL9Fq7UQHMtZE9TFhVkXMyrHcCrvFu66zykGuIyIPEtWpuyfQYybcuvnO2/qd1THWI8HkpcE3yzI/fxbRFmB7QTBsJj10+KUujOzDz9g80nhQGHrxR3zUo7fKj+laOAdc6UyW8MyQp3Jy2970Y5/kVoCCBXx/nCy3G0S9z2rxlm2V4UOQg6s7Z6YLzlvpE0DgIMMmSWJWva1ep7oukyDCF7F402RUSASJct9tJE1qxvy9EUl2nJwf+0HkubjoVgiFGEUZvxzaWcP/Uix136Tp0xtuNtV5i+Z/OBn3ShG8xLUwzcG78MHnEHiqcRuvoSSGv1AiP8niV27t1CmdpIDIiPzYgOIQgzJGDaZdJ90Vw378y3iKhnbpq6zs0P3pCAxF+tFvJ8HP48bBTHyci7QvZ7/QNC5t6Ij8AjvF3d9Y9Z64Ge6Zs8XLUzFCs8VkTRf//yvl4LbiI6ccq5ygSjj/FCBNZluJeZeHLEnG/I6+2hcuk7DsHfwotpgEvHQ2gLBTAmn3iU0jgH+BDudb09/AKrVVJ5pMVBuxJgn8dOP/pLbCJ4w9MqpnjpHxEvkl4BoefaZdOeDbOeYME8NJP1wH//BxDIVZ5qvd9trNA77zy3Ad3VoRo8dRBO1eVJtWgy+QgbBGoTctxCeWBRMQEfECB71+apinNYsngxghsMqp95NX0d+4pU33LYhSjS7034GE62eosb3TT/dcxt+Us1ZWkZnFkNqaIbDkF6HDp/7yPeDbMa9S0aJtdOrBl1GPhy9EL7+lJBIv4xYjq7SSA/qk5jTHpDhDqZSMG74JVTp6FO70ig1JA015K9rJpJp7XH7fjf0BXaxC6Uea/JGTeEgt50rzOjQA0AtkdHikrtrt43/ctCk36IpTH2ZrNvItK5OIR7NB2nU1guUsrhiwbMKOZLc1FjPROaiOukwVRtUaiObERHOXQ8NzPjA8xN07Ua0hej8UoVrZf/BXJLImYFzrgVjtkWVh4VAOuOcnaoSvVio0jtt25K8PTSgu3IvaD2C5l+A7FJmch/5w+cEHRp1022w3rTTEFFy7BvZyiQSScKQfkNWvRZYA7WvPf6wxOWppv+pNp3kBM/J8HJRKaY0yk4xXMZqIVuzRUO1kwsPWAssVh3tGFr6KtuD/PLfJDctO/VX5ij4mJyh8cexz9yhiZ9NpGgsKLWf8L76c7c0zjrE03li7a5cpn1n44lGHV4m3IrwDqvsO2RNdR0BaRR6e9xKlpAM01QxNf+yeR31oon5tsHg/EZXoI5W61MQmv/fc53SbCkFpH7KKL5fNOauIv7JRZ8o699UF8esmLlFKbyO0SJkTaW9WUpMeM/cc2/o3Hj1hrIXtsNBju8ScF+Ollko4CGfGr97VrPzV+tjQd46uhqHxrbcl9HMvqYHyR62u/QyqJBWW+EMJ8JBbiuDT2Yuc76tNSC61G3+atXgT6LkW0yHouumX+Cw9KpVc3fPOxKGMQUL/IWpaq06BFplOBqmsUpffDPqWr5vFP6H9H5MdNQUZdJnbs2BJtOR15xkRIytIqPmBC43LoqujWIwYiz0IYH6x1blD4lk6JrWtkBBr5arE60vngeMsPWXjKpKeheZhlzSFLyHxhleQQEtbndKsgwWQczTxoZiR89TCEbaQjqAGpv1XCL1Bcqc6k9XdbL7xJaa3u1pzK1uMrPjUNiRMwd7EXnDD2fpLs47qjUVz1B8jqnLMEW0hUBw+FwWxrSz0WgexjG44CTaETNYLfMv0Q+prco21xNQGDiQaWu2oT/cqv1hmexyy/uP4J8/XrF/Qix39hxNQ9foi+8O5Usrz2lKcnl9F8aMM3tkPPqKPI8EJ8qk8qHWtQ2WQH9Wmu5qCrWjZkz2CnUhhtgIoBv+UK54EatnQyHp6udllAUVIR+anJtZORC2UE2ov3GVVa6cH7WqMI4zkqD+tnzc9Qb3EpXDtxYMwR+DYMN0Cm6uWDFSUlLJAhTZl4ZB0he1lnTe6CFGNz4TTrqJPf4mlAG2xvV/43vRoflnCZo/2BiO/fIFnUWNRHuWHFU+hc2ppr/nvgfYLUMLtitV5hN1/UuYRfQAMMjyOtPZVeyo1N+bDqoj0Xc28yIc5Jycvq9VRqeEby9UODBrHd/Rw+r5o6SkTGP2gCZozXFp4bKRxkbIkCMoB
Question
1.3
9YVdthW1CLti3Ohh73X1Mn2MnafzbOql9GpM3aZ4LMZw1SNpasd1Sy+DNKZSGBkFSStNI6ZC//GQUQSArxL7zTLHOx2JmOejC00qFdJ6dZBXB2NKh4lrwsi0cMYoEQbZrUOmUsh7B+STbG2brrH80tzBEry/tN9ZazqiexihwQYYKP+cHdhZy6GtKAsRjSu3HaETXW9DHfhBghLrIkj9p4nfXcx6YHWb66UPU76MKjYRQHg6FhUNapf9dbTGi+vCG56wQ+gStNtayWjKJ2S6JikC5X3TXhuueBisKuQBezjgsW6XI9/DRIPLSl/eJV1VpgbveuVKxpMygzsW612hnBr7ueBjJsWntqqsMoKHIcwKosk/YQE7Fh/tgPq8vJgmn6KokDUuGJpnbDMAUVx7G3FDy06M98HrqANOAaoxsdHPlf25gPIVqqedNHONvCSUGIZQ64tfmRmbT/CMPMXso1/4SIJsjugooBssJrue+AojAwYR6cPD+E2yC7+IaNcECAWo+zheD4gGH5mxOIXSIMpP8WTBRtbWhMUpDkMrq0Afe38qMcCvgS+g/ImDqXiViF773Q37ETQijNG/CHr3QrfP/7jdsR8juoN85A6wdfsNA+7kYMqZk9AzSHQv+D+/HjOpaq1oITsFW26wg45OceGOIkI9jCeHTCFm9iNtacRCz5TGQQ0zrYGoCRatdijuUroXzfYNPFmCVRwA4259MgZmqzVUkfKtsXd6wG+wIIE1hFsYlZ3lUWEpnpCHB/ZCHrGDYibEl86r9oF8xS5h7Zoczvwhd0EW61XZuxYFm9GbHslOH4M8UpUgPo4r0NJsvsATh+s6aF1cYJb1h72dE5msD6bv4tTgx17UxMPi6/npTn4Ziu07KYyEmbsnlxK2TPswu8moYODnrtHQyhwLQzUJRCGNXnB1Bb+cAiFzWXsTcTmvuqhjTMWw5tOdaZEYWrKnCIaaCJTHwY+aWeaV8EjdySDBd5QcADdNQ9DmZjJLcFfOPA3FV4JFv9LyHc/HCx6ZeY0kSEWsJXECGyuz4QpVxsYl5cgF+vNg5WgohNIK16fjCoPo2r4X8lbIiNyFbEd1zvYG5/rO2O5lHN0MJkErXD0XiriwB+0pjKx9hPo3VrV8G8/TV4Ejow3TBU5yUT928bEF0x1qmX1BvaUKT42K4G157GObNNMnS6B6zm8vygNhohIo4ycl+5tsnpRPk/CWcXohFPCsl75+/+qo30v8rttVnSQ0nqlxtHpXgxEZL89D4Xq02GMAG/58ZAxVqyOC18Cs2D6DaC03cfjiO4SwWpWnizPiUfteSLsDfNFkQ10UB7DDyOzSAORW0LIO43Xdss/IF3CNxFbJhRR5OBp5fytHFP0aL+csj62lmVou4+O6nQGCAsh4/MZHqdZHM8NZNEd1vXNadmufR6e75QmMXUAZcR1gsci0z0hSLALwGGG9v9AijUYxziCrJIxusu/NcsXnvJpYFL4wGte9b47WCav1KrKmXiiCdv8+HcA1wwh/pZVdU17rNLjELWK7KtFigyfgP5L27fMl4vfTHAwpjT0lGoQETb0pMObNqdpSAz75EU//4gNMi+rfB+p1YXHllDzsr5eW70TAbaQ2uo9bHIfCZQCeWEPWHSP+3m/pw8jHF1oqXUTu55nbp/abj5IcP5DSZVQaeTl5FLZAvXuEsHVVn6hGbNbGWDexrTa4wlu+1HNqjlWvHldP0M6FyKsT1R2zao5qnJAG/qEPcE2WfanxO/azXJQc8X7F650pXwZzmGOgKkcpZtukYw4hcZkFkiZBdzs9JrdIJ2FHerzAuAo=