10. a. The inverse supply is

$$
P=\frac{Q^{S}}{10}
$$

whereas the inverse demand is

$$
P=20-\frac{1}{5} Q^{D}
$$

The graph is shown at right.
b. Define Q_{E} and P_{E} as equilibrium quantity and price, respectively. In equilibrium, price is such that demand is equal to supply. Therefore in equilibrium,

$$
\begin{aligned}
\frac{Q^{S}}{10} & =20-\frac{Q^{D}}{5} \\
\frac{Q_{E}}{10} & =20-\frac{Q_{E}}{5} \\
Q_{E} & =200-2 Q_{E} \\
3 Q_{E} & =200 \\
Q_{E} & =\frac{200}{3}=66 \frac{2}{3}
\end{aligned}
$$

d. Solving for the new equilibrium price and quantity, we get

$$
\begin{aligned}
\frac{Q^{S}}{10}+2 & =20-\frac{Q^{D}}{5} \\
\frac{Q_{E}}{10}+2 & =20-\frac{Q_{E}}{5} \\
Q_{E}+20 & =200-2 Q_{E} \\
3 Q_{E} & =180 \\
Q_{E} & =60
\end{aligned}
$$

The equilibrium price is now

$$
P_{E}=\frac{Q_{E}}{10}+2=\frac{60}{10}+2=8
$$

e. Since $\frac{\partial Q^{D}}{\partial P}=-5<0$, the law of demand holds. Since $\frac{\partial Q^{S}}{\partial P}=10>0$, the law of supply holds.
f. Substituting $P_{R}=50$ into the expanded demand curve, we can see that

$$
\begin{aligned}
Q^{D} & =150-5 P-50 \\
& =100-5 P
\end{aligned}
$$

This is the demand curve as given in the problem's setup.
g. At the new price of towel racks, $Q^{D}=150-5 P-60=90-5 P$. This is a shift downward and to the left (inward) of the original demand curve.

