18. a. Consider increasing frog's legs from 1 to 3 ; that is, by $200 \%$. On the other hand, the price decreases from $\$ 3$ to $\$ 1$; that is, by $200 \%$. Hence, the price elasticity of demand is

$$
E_{D}=\frac{\% \Delta Q^{D}}{\% \Delta P}=\frac{200 \%}{-200 \%}=-1
$$

The demand curve is unit-elastic.
b. The revenue function is given by

$$
P \times Q=P \times \frac{3}{P}=3
$$

so it does not matter how many frog's legs are sold. As long as the quantity is positive, the revenue is $\$ 3$.
c. By inverting $P=\frac{3}{Q^{D}}$ to standard demand form, we can see that $Q^{D}=\frac{3}{P}$ or $Q^{D}=3 P^{-1}$. Now since $\frac{\partial Q^{D}}{\partial P}=-3 P^{-2}=-\frac{3}{P^{2}}<0$, we know that the law of demand holds.
d. At a price of $\$ 2$, quantity demanded is $\frac{3}{2}=1.5$. At a price of $\$ 4$, quantity demanded is $\frac{3}{4}=0.75$. From the demand function in standard form, as calculated in part (c), $\frac{\partial Q^{D}}{\partial P}=-\frac{3}{P^{2}}$.
At a price of $\$ 2$, this equals $-\frac{3}{(2)^{2}}=-\frac{3}{4}$. At a price of $\$ 4$, this equals $-\frac{3}{(4)^{2}}=-\frac{3}{16}$.
Using derivatives therefore, the price elasticity of demand at a price of $\$ 2$ then is

$$
\begin{aligned}
E^{D} & =\frac{\partial Q^{D}}{\partial P} \frac{P}{Q^{D}} \\
& =-\frac{3}{4} \times \frac{2}{1.5} \\
& =-1
\end{aligned}
$$

The price elasticity of demand at a price of $\$ 4$ then is

$$
\begin{aligned}
E^{D} & =\frac{\partial Q^{D}}{\partial P} \frac{P}{Q^{D}} \\
& =-\frac{3}{16} \times \frac{4}{0.75} \\
& =-1
\end{aligned}
$$

Note that this is not surprising given that demand was shown in part (a) to be unit-elastic!

