- **2** 7. A consumer's utility function is given by U = XY, where $MU_X = Y$ and $MU_Y = X$.
 - a. What is the utility derived from 1 unit of X and 2 units of Y? What is the utility derived from 2 units of X and 1 unit of Y? What is the utility derived from 5 units of X and 2 units of Y?
 - b. How does the consumer rank the following bundles?

Bundle	Quantity of <i>X</i>	Quantity of Y
A	2	2
В	10	0
С	1	5
D	3	2
E	2	3

- c. Graph an indifference curve that shows the bundles of X and Y for which U = 6 and U = 8. Is the "more is better" assumption satisfied for X and Y?
- d. What are MU_X and MU_Y for the following bundles?

Bundle	Quantity of X	Quantity of Y
F	1	2
G	2	2
Н	1	3

- e. Does MU_X diminish, stay constant, or increase as X increases? (*Hint*: You must keep the values of all other variables fixed.)
- f. Given the utility function in this problem, show that the marginal utilities are as given using calculus.
- g. Relate the shape of the consumer's indifference curves to his or her marginal rate of substitution.
- h. Suppose that the price of good X is 2, the price of good Y is 4, and the consumer's income is 80. Use a Lagrangian to solve the constrained utility-maximization problem for the consumer.