17. a. Anthony's marginal rate of substitution can be determined from his marginal utility for each good:

$$
\begin{aligned}
M R S_{L G} & =\frac{M U_{L}}{M U_{G}}=\frac{0.5 L^{-0.5} G^{0.5}}{0.5 L^{0.5} G^{-0.5}} \\
& =\frac{G}{L}=\frac{2}{1} \\
G^{*} & =2 L^{*}
\end{aligned}
$$

Anthony's optimal bundle must also lie on his budget constraint, $2 L+G=30$. Substituting the relation from the tangency condition gives

$$
\begin{aligned}
2 L^{*}+2 L^{*} & =30 \\
4 L^{*} & =30 \\
L^{*} & =7.5
\end{aligned}
$$

and

$$
G^{*}=15
$$

The optimal consumption bundle is $\left(L^{*}, G^{*}\right)=(7.5,15)$, and this will give Anthony utility $U=$ $(7.5)^{0.5}(15)^{0.5}=10.6$.
b. If there is a doubling in the price of guitar picks to $P_{G}=\$ 2$, then from the tangency condition:

$$
\begin{aligned}
M R S_{L G} & =\frac{P_{L}}{P_{G}} \\
\frac{G}{L} & =\frac{2}{2} \\
G^{*} & =L^{*}
\end{aligned}
$$

Anthony will want to consume the two goods in equal quantities. In order to maintain utility at $U=10.6$

$$
\begin{aligned}
U(L, G) & =L^{0.5} G^{0.5} \\
10.6 & =L^{0.5} G^{0.5}
\end{aligned}
$$

with $G^{*}=L^{*}=k$

$$
\begin{aligned}
& 10.6=k^{0.5} k^{0.5} \\
& 10.6=k
\end{aligned}
$$

Anthony will consume the bundle $\left(L^{*}, G^{*}\right)=(10.6,10.6)$, which at the new price for guitar picks will cost

$$
(2)(10.6)+(2)(10.6)=\$ 42.40
$$

Anthony will require income $I^{\prime}=\$ 42.40$ in order to maintain the same level of utility.
c. Marginal utilities can be calculated as partial derivatives of the utility function. Since $U(L, G)=$ $L^{0.5} G^{0.5}$, the marginal utility of fishing lures is $M U_{L}=\frac{\partial U}{\partial L}=0.5 L^{-0.5} G^{0.5}$, and the marginal utility of guitar picks is $M U_{G}=\frac{\partial U}{\partial G}=0.5 L^{0.5} G^{-0.5}$.
d. The Lagrangian is

$$
\mathcal{L}(L, G, \lambda)=L^{0.5} G^{0.5}+\lambda[30-2 L-G]
$$

The first-order conditions (partial derivatives of this equation with respect to L, G, and the Lagrange multiplier λ, respectively) are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial L}=0.5 L^{-0.5} G^{0.5}-\lambda(2)=0 \\
& \frac{\partial \mathcal{L}}{\partial G}=0.5 L^{0.5} G^{-0.5}-\lambda=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=30-2 L-G=0
\end{aligned}
$$

Solving the first two equations for λ and setting them equal to each other, we find

$$
\lambda=\frac{0.5 L^{-0.5} G^{0.5}}{2}=\frac{0.5 L^{0.5} G^{-0.5}}{1}
$$

Rearranging, we see that

$$
\begin{aligned}
0.5 L^{-0.5} G^{0.5} & =L^{0.5} G^{-0.5} \\
L & =0.5 G
\end{aligned}
$$

We can combine this with the third of the first-order conditions that tells us the budget constraint relationship:

$$
\begin{aligned}
30 & =2(0.5 G)+G \\
2 G & =30 \\
G^{*} & =15 \\
L^{*} & =0.5(15)=7.5
\end{aligned}
$$

Note that this is the same answer as that to part (a)!
e. (i) Anthony's constrained optimization problem is

$$
\min _{L, G} 2 L+2 G \text { s.t. } 10.6=L^{0.5} G^{0.5}
$$

Note that 10.6 is the utility level corresponding to the optimal consumption bundle as solved for in part (a).
(ii) The Lagrangian is

$$
\mathcal{L}(L, G, \lambda)=2 L+2 G+\lambda\left[10.6-L^{0.5} G^{0.5}\right]
$$

The first-order conditions are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial L}=2-\lambda 0.5 L^{-0.5} G^{0.5}=0 \\
& \frac{\partial \mathcal{L}}{\partial G}=2-\lambda 0.5 L^{0.5} G^{-0.5}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=10.6-L^{0.5} G^{0.5}=0
\end{aligned}
$$

Solve for λ in the first two conditions and set these two expressions equal to one another:

$$
\begin{aligned}
\lambda & =\frac{2}{0.5 L^{-0.5} G^{0.5}}=\frac{2}{0.5 L^{0.5} G^{-0.5}} \\
L & =G
\end{aligned}
$$

Substituting into the third constraint yields

$$
\begin{aligned}
10.6-G^{0.5} G^{0.5} & =0 \\
G^{*} & =10.6
\end{aligned}
$$

Since $L=G$ from above, we get

$$
L^{*}=10.6
$$

Thus, the minimum expenditure is $\$ 2(10.6)+\$ 2(10.6)=\$ 42.4$. Note that this is the same answer as the answer to part (b)!
f. The Lagrangian is now

$$
\mathcal{L}(L, G, \lambda)=L^{0.5} G^{0.5}+\lambda[30-2 L-2 G]
$$

The first-order conditions (partial derivatives of this equation with respect to L, G, and the Lagrange multiplier λ, respectively) are

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial L} & =0.5 L^{-0.5} G^{0.5}-\lambda(2)=0 \\
\frac{\partial \mathcal{L}}{\partial G} & =0.5 L^{0.5} G^{-0.5}-\lambda(2)=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda} & =30-2 L-2 G=0
\end{aligned}
$$

Solving the first two equations for λ and setting them equal to each other, we find

$$
\lambda=\frac{0.5 L^{-0.5} G^{0.5}}{2}=\frac{0.5 L^{0.5} G^{-0.5}}{2}
$$

Rearranging, we see that

$$
\begin{aligned}
0.5 L^{-0.5} G^{0.5} & =0.5 L^{0.5} G^{-0.5} \\
L & =G
\end{aligned}
$$

We can combine this with the third of the first-order conditions that tells us the budget constraint relationship:

$$
\begin{aligned}
30 & =2(G)+2 G \\
4 G & =30 \\
G^{*} & =7.5
\end{aligned}
$$

Since $L=G$ from above, we get

$$
L^{*}=7.5
$$

