$$
\begin{aligned}
& U(1,2)=(1)(2)=2 \\
& U(2,1)=(2)(1)=2 \\
& U(5,2)=(5)(2)=10
\end{aligned}
$$

b.

Bundle	Quantity of \boldsymbol{X}	Quantity of \boldsymbol{Y}	Utility
A	2	2	4
B	10	0	0
C	1	5	5
D	3	2	6
E	2	3	6

From the table, $U(D)=U(E)>U(C)>U(A)>U(B)$ and we have the ranking (> denotes strictly preferred, \sim denotes indifferent)

$$
D \sim E>C>A>B
$$

c. Good \mathbf{Y}

The "more is better" assumption is satisfied.
d.

Bundle	Quantity of \boldsymbol{X}	Quantity of \boldsymbol{Y}	$\boldsymbol{M U}_{\boldsymbol{x}}$	$\boldsymbol{M U}_{\mathbf{Y}}$
F	1	2	2	1
G	2	2	2	2
H	1	3	3	1

e. Comparing bundle F and $G, M U_{X}=2$ for both bundles. $M U_{X}$ is constant.
f. Marginal utilities can be calculated as partial derivatives of the utility function. Since $U=X Y$, the marginal utility of X is $M U_{X}=\frac{\partial U}{\partial X}=Y$, and the marginal utility of Y is $M U_{Y}=\frac{\partial U}{\partial Y}=X$.
g. Indifference curves corresponding to the consumer's utility function are convex to the origin. The slopes of these indifference curves therefore change as the consumer gives up Y to get more X. Specifically, $M R S_{X Y}=\frac{M U_{X}}{M U_{Y}}=\frac{Y}{X}$. This $M R S$ decreases as the consumer gives up Y to obtain more X.
h. The Lagrangian is

$$
\mathcal{L}(X, Y, \lambda)=X Y+\lambda[80-2 X-4 Y]
$$

The first-order conditions (partial derivatives of this equation with respect to X, Y, and the Lagrange multiplier λ, respectively) are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial X}=Y-\lambda(2)=0 \\
& \frac{\partial \mathcal{L}}{\partial Y}=X-\lambda(4)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=80-2 X-4 Y=0
\end{aligned}
$$

Solving the first two equations for λ and setting them equal to each other, we find

$$
\lambda=\frac{Y}{2}=\frac{X}{4}
$$

Rearranging, we see that

$$
\begin{aligned}
4 Y & =2 X \\
X & =2 Y
\end{aligned}
$$

We can combine this with the third of the first-order conditions that tells us the budget constraint relationship:

$$
\begin{aligned}
80 & =2(2 Y)+4 Y \\
8 Y & =80 \\
Y & =10 \\
X & =2(10)=20
\end{aligned}
$$

