Solution

$$U(1, 2) = (1)(2) = 2$$
$$U(2, 1) = (2)(1) = 2$$
$$U(5, 2) = (5)(2) = 10$$

۲

b.	Bundle	Quantity of X	Quantity of Y	Utility		
	А	2	2	4		
	В	10	0	0		
	С	1	5	5		
	D	3	2	6		
	E	2	3	6		

From the table, U(D) = U(E) > U(C) > U(A) > U(B) and we have the ranking (> denotes strictly preferred, \sim denotes indifferent)

The "more is better" assumption is satisfied.

d.	Bundle	Quantity of X	Quantity of Y	MU _x	MUy
	F	1	2	2	1
	G	2	2	2	2
	Н	1	3	3	1

- e. Comparing bundle F and $G,\,MU_{X}=2$ for both bundles. $MU_{X}\,\mathrm{is}$ constant.
- c. comparing bundle r and G, MU_X = 2 for both bundles. MU_X is constant.
 f. Marginal utilities can be calculated as partial derivatives of the utility function. Since U = XY, the marginal utility of X is MU_X = ∂U/∂X = Y, and the marginal utility of Y is MU_Y = ∂U/∂Y = X.
 g. Indifference curves corresponding to the consumer's utility function are convex to the origin. The slopes of these indifference curves therefore change as the consumer gives up Y to get more X. Specifically, MRS_{XY} = MU_X/MU_Y = Y/X. This MRS decreases as the consumer gives up Y to obtain more X.
 h. The Lagrangian is

۲

$$\mathcal{L}(X,Y,\lambda) = XY + \lambda[80 - 2X - 4Y]$$

۲

The first-order conditions (partial derivatives of this equation with respect to X, Y, and the Lagrange multiplier λ , respectively) are

$$\frac{\partial \mathcal{L}}{\partial X} = Y - \lambda(2) = 0$$
$$\frac{\partial \mathcal{L}}{\partial Y} = X - \lambda(4) = 0$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 80 - 2X - 4Y = 0$$

Solving the first two equations for λ and setting them equal to each other, we find

$$\lambda = \frac{Y}{2} = \frac{X}{4}$$

Rearranging, we see that

۲

X = 2Y

4Y = 2X

We can combine this with the third of the first-order conditions that tells us the budget constraint relationship:

$$80 = 2(2Y) + 4Y$$

 $8Y = 80$
 $Y = 10$
 $X = 2(10) = 20$

۲