13. a. Carmen's indifference curves are straight, parallel lines. For her, watching a movie and seeing a basketball game are perfect substitutes. Carmen's utility function can be described as $U=X+2 Y$, where X denotes the basketball games and Y denotes the movies.
b. The optimal consumption bundle is to buy 5 basketball games in order to reach the highest feasible utility curve U_{4}, given the budget constraint.
c. We need to solve Carmen's original constrained optimization problem $\max _{X, Y} 5 X Y$ s.t. $90=18 X+10 Y$ using the Lagrangian approach. The Lagrangian corresponding to this is

$$
\max _{X, Y, \lambda} \mathcal{L}(X, Y, \lambda)=5 X Y+\lambda(90-18 X-10 Y)
$$

The first-order conditions are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial X}=5 Y-\lambda(18)=0 \\
& \frac{\partial \mathcal{L}}{\partial Y}=5 X-\lambda(10)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=90-18 X-10 Y=0
\end{aligned}
$$

This is a system of three equations with three unknowns $(X, Y$, and λ). The solution (X, Y) is the allocation that we are interested in. Combining the first two equations, we see that

$$
\lambda=\frac{5 Y}{18}=\frac{5 X}{10}
$$

Therefore, $18 X=10 Y$.
Combining this with the third of the first-order conditions, we get

$$
\begin{aligned}
90 & =18 X+(18 X) \\
90 & =36 X \\
X & =2.5
\end{aligned}
$$

Since $Y=\frac{9 X}{5}$:

$$
Y=\frac{9(2.5)}{5}=4.5
$$

Carmen should buy 2.5 units of X and 4.5 units of Y at these prices.
We also want to find Carmen's level of utility at this original allocation: $U(2.5,4.5)=$ $5(2.5)(4.5)=56.25$.
d. We need to solve Carmen's new constrained optimization problem using the Lagrangian approach: $\max _{X, Y} 5 X Y$ s.t. $90=20 X+10 Y$. The Lagrangian corresponding to this is

$$
\max _{X, Y, \lambda} \mathcal{L}(X, Y, \lambda)=5 X Y+\lambda(90-20 X-10 Y)
$$

The first-order conditions are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial X}=5 Y-\lambda(20)=0 \\
& \frac{\partial \mathcal{L}}{\partial Y}=5 X-\lambda(10)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=90-20 X-10 Y=0
\end{aligned}
$$

This is a system of three equations with three unknowns (X, Y, and λ). The solution (X, Y) is the allocation that we are interested in. Combining the first two equations, we see that

$$
\lambda=\frac{5 Y}{20}=\frac{5 X}{10}
$$

Therefore, $2 X=Y$.
Combining this with the third of the first-order conditions, we get

$$
\begin{aligned}
90 & =20 X+10(2 X) \\
90 & =40 X \\
X & =2.25 \\
Y & =2(2.25)=4.5
\end{aligned}
$$

Carmen should buy 2.25 units of X and 4.5 units of Y at these prices. The total effect of the price change therefore is a decrease of 0.25 units of good X and no change in good Y.
e. To decompose this total effect into income and substitution effects, we can solve the expenditure minimization problem $\min _{X, Y} 20 X+10 Y$ s.t. $56.25=5 X Y$. The Lagrangian corresponding to this is

$$
\mathcal{L}(X, Y, \lambda)=20 X+10 Y+\lambda(56.25-5 X Y)
$$

The first-order conditions are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial X}=20-\lambda(5 Y)=0 \\
& \frac{\partial \mathcal{L}}{\partial Y}=10-\lambda(5 X)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=56.25-5 X Y=0
\end{aligned}
$$

This is now a system of three equations with three unknowns that can be solved for X, Y, and $\lambda . X$ and Y give the allocation that will allow us to separate the substitution and income effects:

$$
\lambda=\frac{10}{5 X}=\frac{20}{5 Y}
$$

Therefore, $2 X=Y$.
Combining this with the third of the first-order conditions, we get

$$
\begin{aligned}
56.25 & =5 X(2 X) \\
56.25 & =10 X^{2} \\
X & \approx 2.37 \\
Y & \approx 2(2.37)=4.74
\end{aligned}
$$

The substitution effect for good X therefore is the difference between 2.5 and 2.37 (representing a decrease of 0.13 units), and the income effect for good X is $2.25-2.37=-0.12$ units. The total effect therefore is a decrease of 0.25 units, as in part (d). For good Y, we find that the substitution effect is $4.74-4.5=0.24$ units, and the income effect is $4.5-4.74=-0.24 ;$ hence, the total effect is zero.
f. Good X is a normal good for Carmen. As the price here increases (and therefore as Carmen experiences a drop in purchasing power), she decreases her consumption of good X (the income effect). Another way to answer is to note that the income and substitution effects for good X (the good experiencing a price change) are moving in the same direction.
g. Carmen's constrained optimization problem is $\max _{X, Y} 5 X Y$ s.t. $\bar{I}-p_{X} X+\overline{p_{Y}} Y$. The Lagrangian corresponding to this is

$$
\max _{X, Y, \lambda} \mathcal{L}(X, Y, \lambda)=5 X Y+\lambda\left(\bar{I}-p_{X} X-\overline{p_{Y}} Y\right)
$$

The first-order conditions are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial X}=5 Y-\lambda\left(p_{X}\right)=0 \\
& \frac{\partial \mathcal{L}}{\partial Y}=5 X-\lambda\left(\overline{p_{Y}}\right)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\bar{I}-p_{X} X-\overline{p_{Y}} Y=0
\end{aligned}
$$

Combining the first two equations, we see that

$$
\lambda=\frac{5 Y}{p_{X}}=\frac{5 X}{\overline{p_{Y}}}
$$

Therefore, $\overline{p_{Y}} Y=p_{X} X$.
Combining this with the third of the first-order conditions, we get

$$
\begin{aligned}
& \bar{I}=p_{X} X+\overline{p_{Y}} Y \\
& \bar{I}=p_{X} X+p_{X} X
\end{aligned}
$$

Carmen's Marshallian demand curve for X is $\frac{\bar{I}}{2 p_{X}}$. Since $\frac{\partial X}{\partial p_{X}}=\frac{\bar{I}}{2 p_{X}^{2}}<0$, the Law of Demand stating
that demand is decreasing in price holds.
h. Carmen's constrained optimization problem is $\min _{X, Y} p_{X} X+\bar{p}_{Y} Y$ s.t. $\bar{U}=5 X Y$. The Lagrangian corresponding to this is

$$
\min _{X, Y, \lambda} \mathcal{L}(X, Y, \lambda)=p_{X} X+\overline{p_{Y}} Y+\lambda(\bar{U}-5 X Y)
$$

The first-order conditions are

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial X}=p_{X}-\lambda(5 Y)=0 \\
& \frac{\partial \mathcal{L}}{\partial Y}=\overline{p_{Y}}-\lambda(5 X)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\bar{U}-5 X Y=0
\end{aligned}
$$

Combining the first two equations, we see that

$$
\lambda=\frac{p_{X}}{5 Y}=\frac{\overline{p_{Y}}}{5 X}
$$

Therefore, $\overline{p_{Y}} Y=p_{X} X$ or $Y=\frac{p_{X} X}{\overline{p_{Y}}}$.
Combining this with the third of the first-order conditions, we get

$$
\begin{aligned}
\bar{U} & =5 X Y \\
& =5 X\left(\frac{p_{X} X}{\overline{p_{Y}}}\right)
\end{aligned}
$$

Carmen's Hicksian demand curve X then is

$$
X=\sqrt{\bar{U}\left(\frac{\overline{p_{Y}}}{5 p_{X}}\right)}
$$

