Plant cells communicate through plasmodesmata

146

Instead of gap junctions, plants have plasmodesmata (singular plasmodesma), which are membrane-lined tunnels that traverse the thick cell walls separating plant cells from one another. A typical plant cell has several thousand plasmodesmata. Plasmodesmata differ from gap junctions in one fundamental way: unlike gap junctions, in which the wall of the channel is made of integral membrane proteins from the adjacent cell membranes, plasmodesmata are lined by the fused cell membranes themselves.

The diameter of a plasmodesma is about 6 nm, far larger than a gap junction channel. But the actual space available for diffusion is about the same—1.5 nm. Examination of the interior of the plasmodesma by transmission electron microscopy reveals that a tubule called the desmotubule, apparently derived from the endoplasmic reticulum, fills up most of the opening of the plasmodesma (Figure 7.16B). Typically, only small metabolites and ions can move between plant cells.

Plasmodesmata are vital in plants because their circulatory transport system, the vascular system, lacks the tiny vessels (capillaries) that many animals have for bringing gases and nutrients to every cell. For instance, simple diffusion from plant cell to cell across cell membranes is inadequate to account for the movement of a plant hormone from the site of production to the site of action. Instead, plants rely on more rapid diffusion through plasmodesmata to ensure that all cells of a tissue respond to a signal at the same time. There are cases in which larger molecules or particles can pass between cells via plasmodesmata. For example, some viruses can move through plasmodesmata by using “movement proteins” to assist their passage.