Extended References

First Step of Harvesting Energy from Glucose: Glycolysis

Berg, J., J. Tymoczko, and L. Stryer. 2002. Biochemistry, 5th ed. W. H. Freeman and Company. Chaps. 16 and 17.

Dasgupta, T., et al. 2014. A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis. J. Biol. Chem. 289:13010–13025.

Depre, C., M. Rider, and L. Hue. 1998. Mechanisms of control of heart glycolysis. Eur. J. Biochem. 258:277–290.

Fersht, A. 1999. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W. H. Freeman and Company.

Fothergill-Gilmore, L. A., and P. A. Michels. 1993. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59:105–135.

Nelson, D. L., and M. M. Cox. 2000. Lehninger Principles of Biochemistry. Worth. Chaps. 14–17, 19.

Pilkis, S. J., et al. 1995. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu. Rev. Biochem. 64:799–835.

The Structure and Functions of Mitochondria

Ahn, C. S., and C. M. Metallo. 2015. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. J3:1.

Bonawitz, N. D., D. A. Clayton, and G. S. Shadel. 2006. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol. Cell 24:813–825.

Canfield, D. E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Pl. Sc. 33:1–36.

Friedman J. R., et al. 2011. ER tubules mark sites of mitochondrial division. Science 334:358.

Giorgi, C., et al. 2015. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid. Redox. Signal. 22:995–1019.

Kamer, K. J., Y. Sancak, and V. K. Mootha. 2014. The uniporter: from newly identified parts to function. Biochem. Bioph. Res. Co. 449:370–372.

Kaufman, R. J., and J. D. Malhotra. 2014. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim. Biophys. Acta 1843:2233–2239.

Las, G., and O. S. Shirihai. 2014. Miro1: new wheels for transferring mitochondria. EMBO J. 33:939–941.

Mishra, P., and D. C. Chan. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15:634–646.

Miyawaki, A., et al.1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887.

Song, M., and G. W. Dorn II. 2015. Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab. 21:195–205.

Spät, A., et al. 2008. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 44:51–63.

Tan, A. S., et al. 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21:81–94.

Vance, J. E. 2014. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841:595–609.

van der Merwe, C., et al. 2015. Evidence for a common biological pathway linking three Parkinson’s disease-causing genes: parkin, PINK1 and DJ-1. Eur. J. Neurosci. 41:1113–1125.

Wang, X., and H. H. Gerdes. 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22:1181–1191.

The Citric Acid Cycle and Fatty Acid Oxidation

Canfield, D. E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Pl. Sc. 33:1–36.

Chan, D. C. 2006. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252.

Eaton, S., K. Bartlett, and M. Pourfarzam. 1996. Mammalian mitochondrial beta-oxidation. Biochem. J. 320 (Part 2):345–557.

Guest, J. R., and G. C. Russell. 1992. Complexes and complexities of the citric acid cycle in Escherichia coli. Curr. Top. Cell. Regul. 33:231–247.

Krebs, H. A. 1970. The history of the tricarboxylic acid cycle. Perspect. Biol. Med. 14:154–170.

Rasmussen, B., and R. Wolfe. 1999. Regulation of fatty acid oxidation in skeletal muscle. Annu. Rev. Nutr. 19:463–484.

Velot, C., et al. 1997. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36:14271–14276.

Wanders, R. J., and H. R. Waterham. 2006. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75:295–332.

The Electron-Transport Chain and Generation of the Proton-Motive Force

Acin-Pérez, R., et al. 2008. Respiratory active mitochondrial supercomplexes. Mol. Cell 32:529–539.

Babcock, G. 1999. How oxygen is activated and reduced in respiration. P. Natl. Acad. Sci. USA 96:12971–12973.

Beinert, H., R. Holm, and E. Münck. 1997. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659.

Brandt, U. 2006. Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75:165–187.

Brandt, U., and B. Trumpower. 1994. The protonmotive Q cycle in mitochondria and bacteria. Crit. Rev. Biochem. Mol. 29:165–197.

Daiber, A. 2010. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim. Biophys. Acta 6–7:897–906.

Darrouzet, E., et al. 2001. Large scale domain movement in cytochrome bc1: a new device for electron transfer in proteins. Trends Biochem. Sci. 26:445–451.

Dickinson, B. C., D. Srikun, and C. J. Chang. 2010. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14:50–56.

Dudkina, N. V., I. M. Folea, and E. J. Boekema. 2015. Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 72:39–51.

Efremov, R. G., R. Baradaran, and L. A. Sazanov. 2010. The architecture of respiratory complex I. Nature 465:441–445.

Finkel, T. 2011. Signal transduction by reactive oxygen species. J. Cell Biol. 194:7–15.

Grigorieff, N. 1999. Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr. Opin. Struct. Biol. 9:476–483.

Hosler, J. P., S. Ferguson-Miller, and D. A. Mills. 2006. Energy transduction: proton transfer through the respiratory complexes. Annu. Rev. Biochem. 75:165–187.

Hunte, C., V. Zickermann, and U. Brandt. 2010. Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451.

Hyde, B. B., G. Twig, and O. S. Shirihai. 2010. Organellar vs cellular control of mitochondrial dynamics. Semin. Cell Dev. Biol. 21:575–581.

Koopman, W. J., et al. 2010. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 12:1431–1470.

Michel, H., et al. 1998. Cytochrome c oxidase. Annu. Rev. Bioph. Biom. 27:329–356.

Mitchell, P. 1979. Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159. (Nobel Prize lecture.)

Murphy, M. P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417:1–13.

Ramirez, B. E., et al. 1995. The currents of life: the terminal electron-transfer complex of respiration. P. Natl. Acad. Sci. USA 92:11949–11951.

Ruitenberg, M., et al. 2002. Reduction of cytochrome c oxidase by a second electron leads to proton translocation. Nature 417:99–102.

Saraste, M. 1999. Oxidative phosphorylation at the fin de siècle. Science 283:1488–1492.

Schafer, E., et al. 2006. Architecture of active mammalian respiratory chain supercomplexes. J. Biol. Chem. 281(22):15370–15375.

Schultz, B., and S. Chan. 2001. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu. Rev. Bioph. Biom. 30:23–65.

Sheeran, F. L., and S. Pepe. 2006. Energy deficiency in the failing heart: linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim. Biophys. Acta 1757(5–6):543–552.

Sies, H. 2014. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289:8735–8741.

Tsukihara, T., et al. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144.

Walker, J. E. 1995. Determination of the structures of respiratory enzyme complexes from mammalian mitochondria. Biochim. Biophys. Acta 1271:221–227.

Wallace, D. C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39:359–407.

Xia, D., et al. 1997. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66.

Zaslavsky, D., and R. Gennis. 2000. Proton pumping by cytochrome oxidase: progress and postulates. Biochim. Biophys. Acta 1458:164–179.

Zhang, M., E. Mileykovskaya, and W. Dowhan. 2005. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J. Biol. Chem. 280(33):29403–29408.

Zhang, Z., et al. 1998. Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684.

Harnessing the Proton-Motive Force to Synthesize ATP

Aksimentiev, A., et al. 2004. Insights into the molecular mechanism of rotation in the F0 sector of ATP synthase. Biophys. J. 86(3):1332–1344.

Allegretti, M., et al. 2015. Horizontal membrane-intrinsic α-helices in the stator α-subunit of an F-type ATP synthase. Nature 521:237–240.

Bianchet, M. A., et al. 1998. The 2.8 Å structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. P. Natl. Acad. Sci. USA 95:11065–11070.

Boyer, P. D. 1997. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66:717–749.

Capaldi, R., and R. Aggeler. 2002. Mechanism of the F0F1-type ATP synthase—a biological rotary motor. Trends Biochem. Sci. 27:154–160.

Elston, T., H. Wang, and G. Oster. 1998. Energy transduction in ATP synthase. Nature 391:510–512.

Hinkle, P. C. 2005. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta 1706(1–2):1–11.

Junge, W., and N. Nelson. 2015. ATP synthase. Annu. Rev. Biochem. 84:631–657.

Junge, W., S. Hendrik, and S. Engelbrecht. 2009. Torque generation and elastic power transmission in the rotary F0F1-ATPase. Nature 459:364–370.

Kinosita, K., et al. 1998. F1-ATPase: a rotary motor made of a single molecule. Cell 93:21–24.

Klingenberg, M., and S. Huang. 1999. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta 1415:271–296.

Nury, H., et al. 2006. Relations between structure and function of the mitochondrial ADP/ATP carrier. Annu. Rev. Biochem. 75:713–741.

Oliveira, A. S., et al. 2014. Exploring O2 diffusion in A-type cytochrome c oxidases: molecular dynamics simulations uncover two alternative channels towards the binuclear site. PLoS Comput. Biol. 10:e1004010.

Rosen, E. D., and B. M. Spiegelman. 2014. What we talk about when we talk about fat. Cell 156:20–44.

Sharma, V., et al. 2015. Role of subunit III and its lipids in the molecular mechanism of cytochrome c oxidase. Biochim. Biophys. Acta 1847:690–697.

Tsunoda, S., et al. 2001. Rotation of the c subunit oligomer in fully functional F0F1 ATP synthase. P. Natl. Acad. Sci. USA 98:898–902.

Vercesi, A. E., et al. 2006. Plant uncoupling mitochondrial proteins. Annu. Rev. Plant Biol. 57:383–404.

von Ballmoos, C., A. Wiedenmann, and P. Dimroth. 2009. Essentials for ATP synthesis by F1F0 ATP synthases. Annu. Rev. Biochem. 78:649–672.

Wu, J., H. Jun, and J. R. McDermott. 2015. Formation and activation of thermogenic fat. Trends Genet. 31:232–238.

Yasuda, R., et al. 2001. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904.

Photosynthesis and Light-Absorbing Pigments

Bendich, A. J. 2004. Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666.

Ben-Shem, A., F. Frolow, and N. Nelson. 2003. Crystal structure of plant photosystem I. Nature 426(6967):630–635.

Blankenship, R. E. 2002. Molecular Mechanisms of Photosynthesis. Blackwell.

Deisenhofer, J., and J. R. Norris, eds. 1993. The Photosynthetic Reaction Center. Vols. 1 and 2. Academic Press.

McDermott, G., et al. 1995. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 364:517.

Nelson, N., and C. F. Yocum. 2006. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57:521–565.

Prince, R. 1996. Photosynthesis: the Z-scheme revisited. Trends Biochem. Sci. 21:121–122.

Wollman, F. A. 2001. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20:3623–3630.

Molecular Analysis of Photosystems

Allen, J. F. 2002. Photosynthesis of ATP—electrons, proton pumps, rotors, and poise. Cell 110:273–276.

Amunts, A., et al. 2010. Structure determination and improved model of plant photosystem I. J. Biol. Chem. 285:3478–3486.

Aro, E. M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystem II: Inactivation, protein damage, and turnover. Biochim. Biophys. Acta 1143:113–134.

Deisenhofer, J., and H. Michel. 1989. The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245:1463–1473. (Nobel Prize lecture.)

Deisenhofer, J., and H. Michel. 1991. Structures of bacterial photosynthetic reaction centers. Annu. Rev. Cell Biol. 7:1–23.

Dekker, J. P., and E. J. Boekema. 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706(1–2):12–39.

Finazzi, G. 2005. The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions J. Exp. Bot. 56(411):383–388.

Guskov, A., et al. 2010. Recent progress in the crystallographic studies of photosystem II. ChemPhysChem. 11(6):1160–1171.

Haldrup, A., et al. 2001. Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci. 6:301–305.

Hankamer, B., J. Barber, and E. Boekema. 1997. Structure and membrane organization of photosystem II from green plants. Annu. Rev. Plant Phys. 48:641–672.

Heathcote, P., P. Fyfe, and M. Jones. 2002. Reaction centres: the structure and evolution of biological solar power. Trends Biochem. Sci. 27:79–87.

Horton, P., A. Ruban, and R. Walters. 1996. Regulation of light harvesting in green plants. Annu. Rev. Plant Phys. 47:655–684.

Iwai, M., et al. 2010. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213.

Joliot, P., and A. Joliot. 2005. Quantification of cyclic and linear flows in plants. P. Natl. Acad. Sci. USA 102(13):4913–4918.

Jordan, P., et al. 2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917.

Kühlbrandt, W. 2001. Chlorophylls galore. Nature 411:896–898.

Martin, J. L., and M. H. Vos. 1992. Femtosecond biology. Annu. Rev. Bioph. Biom. 21:199–222.

Nelson, N., and W. Junge. 2015. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84:659–683.

Penner-Hahn, J. 1998. Structural characterization of the Mn site in the photosynthetic oxygen-evolving complex. Struct. Bond. 90:1–36.

Shikanai, T. 2014. Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr. Opin. Biotech. 26:25–30.

Suga, M., et al. 2015. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103.

Tomizioli, M., et al. 2014. Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol. Cell. Proteomics 13:2147–2167.

Tommos, C., and G. Babcock. 1998. Oxygen production in nature: a light-driven metalloradical enzyme process. Accounts Chem. Res. 31:18–25.

CO2 Metabolism During Photosynthesis

Buchanan, B. B. 1991. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch. Biochem. Biophys. 288:1–9.

Gutteridge, S., and J. Pierce. 2006. A unified theory for the basis of the limitations of the primary reaction of photosynthetic CO2 fixation: was Dr. Pangloss right? P. Natl. Acad. Sci. USA 103:7203–7204.

Mueller-Cajar, O., M. Stotz, and A. Bracher. 2014. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynth. Res. 119:191–201.

Portis, A. 1992. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu. Rev. Plant Phys. 43:415–437.

Rawsthorne, S. 1992. Towards an understanding of C3-C4 photosynthesis. Essays Biochem. 27:135–146.

Rokka, A., I. Zhang, and E.-M. Aro. 2001. Rubisco activase: an enzyme with a temperature-dependent dual function? Plant J. 25:463–472.

Sage, R., and J. Colemana. 2001. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 6:18–24.

Schneider, G., Y. Lindqvist, and C. I. Branden. 1992. Rubisco: structure and mechanism. Annu. Rev. Bioph. Biom. 21:119–153.

Tcherkez, G. G., G. D. Farquhar, and T. J. Andrews. 2006. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. P. Natl. Acad. Sci. USA 103(19):7246–7251.

Wolosiuk, R. A., M. A. Ballicora, and K. Hagelin. 1993. The reductive pentose phosphate cycle for photosynthetic CO2 assimilation: enzyme modulation. FASEB J. 7:622–637.