Extended References

Cell-Cell and Cell–Extracellular Matrix Adhesion: An Overview

Bordoli, M. R., et al. 2014. A secreted tyrosine kinase acts in the extracellular environment. Cell 158:1033–1044.

Carthew, R. W. 2005. Adhesion proteins and the control of cell shape. Curr. Opin. Genet. Devel. 15(4):358–363.

Case, L. B., and C. M. Waterman. 2015. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell. Biol. 17(8):955–963.

Cereijido, M., R. G. Contreras, and L. Shoshani. 2004. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol. Rev. 84:1229–1262.

Gumbiner, B. M. 1996. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357.

Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. 2014. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–812.

Huveneers, S., and E. H. Danen. 2009. Adhesion signaling—crosstalk between integrins, Src and Rho. J. Cell Sci. 122:1059–1069.

Hynes, R. O. 2012. The evolution of metazoan extracellular matrix. J. Cell Biol. 196:671–679.

Jamora, C., and E. Fuchs. 2002. Intercellular adhesion, signalling and the cytoskeleton. Nat. Cell Biol. 4(4):E101–E108.

Jansen, K. A., et al. 2015. A guide to mechanobiology: where biology and physics meet. Biochim. Biophys. Acta 1853:3043–3052.

Juliano, R. L. 2002. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Ann. Rev. Pharmacol. 42:283–323.

Karsdal, M. A., et al. 2015. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 308:G807–G830.

Kubow, K. E., et al. 2015. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6:8026.

The Matrisome Project website (http://matrisomeproject.mit.edu). A compilation of datasets and information about the genes and proteins of the matrisome.

Naba, A., et al. The extracellular matrix: tools and insights for the "omics" era. Matrix Biol. 2015 Jul 8. pii: S0945-053X(15)00121-3. [Epub ahead of print]

Padmanabhan, A., et al. 2015. Jack of all trades: functional modularity in the adherens junction. Curr. Opin. Cell Biol. 36:32–40.

Tagliabracci, V. S., L. A. Pinna, and J. E. Dixon. 2013. Secreted protein kinases. Trends Biochem. Sci. 38:121–130.

Thiery, J. P., and J. P. Sleeman. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7:131–142.

Yan, J., et al. 2015. Talin dependent mechanosensitivity of cell focal adhesions. Cell Mol. Bioeng. 8:151–159.

Yao, M., et al. 2014. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4:4610.

Cell-Cell and Cell–Extracellular Matrix Junctions and Their Adhesion Molecules

Anderson, J. M., and C. M. Van Itallie. 2009. Physiology and function of the tight junction. Cold Spring Harb. Perspect. Biol. 1(2):a002584.

Bochkov, Y. A., et al. 2015. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. P. Natl. Acad. Sci. USA 112:5485–5490.

Brasch, J., et al. 2012. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol. 22:299–310.

Clandinin, T. R., and S. L. Zipursky. 2002. Making connections in the fly visual system. Neuron 35:827–841.

Conrad, M. P., et al. 2016. Molecular basis of claudin-17 anion selectivity. Cell. Mol. Life Sci. 73:185–200.

Crawley, S. W., et al. 2014. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 157:433–446.

Dahl, G. 2015. ATP release through pannexon channels. Phil. Trans. R. Soc. Lond. B Biol. Sci. 370:20140191.

Fuchs, E., and S. Raghavan. 2002. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3(3):199–209.

Furuse, M., et al. 2014. Molecular organization of tricellular tight junctions. Tissue Barriers 2:e28960.

Gershon, E., V. Plaks, and N. Dekel. 2008. Gap junctions in the ovary: expression, localization and function. Mol. Cell. Endocrinol. 282:18–25.

Glentis, A., V. Gurchenkov, and D. Matic Vignjevic. 2014. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adh. Migr. 8(3):236–245.

Goodenough, D. A., and D. L. Paul. 2009. Gap junctions. Cold Spring Harb. Perspect. Biol. 1:a002576.

Gumbiner, B. M. 2005. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6:622–634.

Guttman, J. A., and B. B. Finlay. 2009. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta 1788(4):832–841.

Harris, T. J., and U. Tepass. 2010. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11(7):502–514.

Hatzfeld, M. 2007. Plakophilins: multifunctional proteins or just regulators of desmosomal adhesion? Biochim. Biophys. Acta 1773:69–77.

Higashi, T., et al. 2015. Deficiency of angulin-2/ILDR1, a tricellular tight junction-associated membrane protein, causes deafness with cochlear hair cell degeneration in mice. PLoS One 10:e0120674.

Hobbie, L., et al. 1987. Restoration of LDL receptor activity in mutant cells by intercellular junctional communication. Science 235:69–73.

Hunter, A. W., et al. 2005. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol. Biol. Cell 16(12):5686–5698.

Jefferson, J. J., C. L. Leung, and R. K. H. Liem. 2004. Plakins: Goliaths that link cell junctions and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 5:542–553.

Kim, N. G., et al. 2011. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. P. Natl. Acad. Sci. USA 108:11930–11935.

Kurtenbach, S., S. Kurtenbach, and G. Zoidl. 2014. Gap junction modulation and its implications for heart function. Front. Physiol. 5:82.

Laird, D. W. 2006. Life cycle of connexins in health and disease. Biochem. J. 394(pt. 3):527–543.

Lee, J. M., et al. 2006. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172(7):973–981.

McMillen, P., and S. A. Holley. 2015. Integration of cell-cell and cell-ECM adhesion in vertebrate morphogenesis. Curr. Opin. Cell Biol. 36:48–53.

Nakagawa, S., S. Maeda, and T. Tsukihara. 2011. Structural and functional studies of gap junction channels. Curr. Opin. Struc. Biol. 21(1):101–108.

Oda, H., and M. Takeichi. 2011. Structural and functional diversity of cadherin at the adherens junction. J. Cell Biol. 193(7):1137–1146.

Pierschbacher, M. D., and E. Ruoslahti. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30–33.

Schöck, F., and N. Perrimon. 2002. Molecular mechanisms of epithelial morphogenesis. Annu. Rev. Cell Dev. Biol. 18:463–493.

Shuhaibar, L. C., et al. 2015. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. P. Natl. Acad. Sci. USA 112:5527–5532.

Strale, P. O., et al. 2015. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell-cell contact fluidity. J. Cell Biol. 210:333–346.

Suzuki, H., et al. 2014. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344:304–307.

Traweger, A., et al. 2013. Beyond cell-cell adhesion: emerging roles of the tight junction scaffold ZO-2. Tissue Barriers 1:e25039.

Turner, J. R., et al. 2014. The role of molecular remodeling in differential regulation of tight junction permeability. Semin. Cell Dev. Biol. 36:204–212.

Vendome, J., et al. 2014. Structural and energetic determinants of adhesive binding specificity in type I cadherins. P. Natl. Acad. Sci. USA 111:E4175–4184.

Vogelmann, R., et al. 2004. Breaking into the epithelial apical-junctional complex—news from pathogen hackers. Curr. Opin. Cell Biol. 16(1):86–93.

Walko, G., M. J. Castañón, and G. Wiche. 2015. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 360:529–544.

Wigglesworth, K., et al. 2013. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. P. Natl. Acad. Sci. USA 110:E3723–E3729.

Wu, Y., P. Kanchanawong, and R. Zaidel-Bar. 2015. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev. Cell 32:139–154.

Yang, C. C., et al. 2015. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. P. Natl. Acad. Sci. USA 112:1785–1790.

Zaidel-Bar, R., and B. Geiger. 2010. The switchable integrin adhesome. J. Cell Sci. 123(pt. 9):1385–1388.

Zhang, Y.,. 2009. Resolving cadherin interactions and binding cooperativity at the single-molecule level. P. Natl. Acad. Sci. USA 106(1):109–114.

The Extracellular Matrix I: The Basal Lamina

Aumailley, M. 2013. The laminin family. Cell Adh. Migr. 7:48–55.

Bonnans, C., J. Chou, and Z. Werb. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:786–801.

Boutaud, A., et al. 2000. Type IV collagen of the glomerular basement membrane: evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J. Biol. Chem. 275:30716–30724.

Domogatskaya, A., S. Rodin, and K. Tryggvason. 2012. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28:523–553.

Farach-Carson, M. C., et al. 2014. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 34:64–79.

Hohenester, E., and P. D. Yurchenco. 2013. Laminins in basement membrane assembly. Cell Adh. Migr. 7:56–63.

Hynes, R. O. 2014. Stretching the boundaries of extracellular matrix research. Nat. Rev. Mol. Cell Biol. 15:761–763.

Iozzo, R. V. 2005. Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell Biol. 6(8):646–656.

Kruegel, J., and N. Miosge. 2010. Basement membrane components are key players in specialized extracellular matrices. Cell. Mol. Life Sci. 67(17):2879–2895.

Lu, P., V. M. Weaver, and Z. Werb. 2012. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196:395–406.

Mouw, J. K., G. Ou, and V. M. Weaver. 2014. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15:771–785.

Perrimon, N., and M. Bernfield. 2001. Cellular functions of proteoglycans: an overview. Semin. Cell Dev. Biol. 12(2):65–67.

Robertson, W. E., et al. 2014. Supramolecular organization of the α121-α565 collagen IV network. J. Biol. Chem. 289:25601–25610.

Rosenberg, R. D., et al. 1997. Heparan sulfate proteoglycans of the cardiovascular system: specific structures emerge but how is synthesis regulated? J. Clin. Invest. 99:2062–2070.

Sarrazin, S., W. C. Lamanna, and J. D. Esko. 2011. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3. pii: a004952.

Whitelock, J. M., J. Melrose, and R. V. Iozzo. 2008. Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183.

The Extracellular Matrix II: Connective Tissue

Canty, E. G., and K. E. Kadler. 2005. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118:1341–1353.

Fields, G. B. 2010. Synthesis and biological applications of collagen-model triple-helical peptides. Org. Biomol. Chem. 8(6):1237–1258.

Hanlon, S. D., et al. 2015. Corneal stroma microfibrils. Exp. Eye Res. 132:198–207.

Hayashi, H., and T. Sakai. 2012. Biological significance of local TGF-β activation in liver diseases. Front. Physiol. 3:12.

Kramer, R. Z., et al. 2001. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. J. Mol. Biol. 311:131–147.

Leitinger, B., and E. Hohenester. 2007. Mammalian collagen receptors. Matrix Biol. 26(3):146–155.

Mao, J. R., and J. Bristow. 2001. The Ehlers-Danlos syndrome: on beyond collagens. J. Clin. Invest. 107:1063–1069.

Orgel, J. P., et al. 2006. Microfibrillar structure of type I collagen in situ. P. Natl. Acad. Sci. USA 103:9001–9005.

Robertson, I. B., et al. 2015. Latent TGF-β-binding proteins. Matrix Biol. 47:44–53.

Sakai, T., M. Larsen, and K. Yamada. 2003. Fibronectin requirement in branching morphogenesis. Nature 423:876–881.

Shaw, L. M., and B. R. Olsen. 1991. FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci. 16(5):191–194.

Shiomi, T., et al. 2010. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol. Int. 60(7):477–496.

Shoulders, M. D., and R. T. Raines. 2011. Interstrand dipole-dipole interactions can stabilize the collagen triple helix. J. Biol. Chem. 286:22905–22912.

Weiner, S., W. Traub, and H. D. Wagner. 1999. Lamellar bone: structure-function relations. J. Struct. Biol. 126:241–255.

Yoshida-Moriguchi, T., and K. P. Campbell. 2015. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25:702–713.

Adhesive Interactions in Motile and Nonmotile Cells

Barresi, R., and K. P. Campbell. 2006. Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119(pt. 2):199–207.

Bartsch, U. 2003. Neural CAMs and their role in the development and organization of myelin sheaths. Front. Biosci. 8:D477–D490.

Brummendorf, T., and V. Lemmon. 2001. Immunoglobulin superfamily receptors: cis-interactions, intracellular adapters and alternative splicing regulate adhesion. Curr. Opin. Cell Biol. 13:611–618.

Calderwood, D. A., I. D. Campbell, and D. R. Critchley. 2013. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14:503–517.

Carraher, C. L., and J. E. Schwarzbauer. 2013. Regulation of matrix assembly through rigidity-dependent fibronectin conformational changes. J. Biol. Chem. 288:14805–14814.

Case, L. B., et al. 2015. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17:880–892.

Collins, C., and W. J. Nelson. 2015. Running with neighbors: coordinating cell migration and cell-cell adhesion. Curr. Opin. Cell Biol. 36:62–70.

Cukierman, E., R. Pankov, and K. M. Yamada. 2002. Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14:633–639.

Even-Ram, S., and K. M. Yamada. 2005. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17(5):524–532.

Früh, S. M., et al. 2015. Molecular architecture of native fibronectin fibrils. Nat. Commun. 6:7275.

Gee, E. P., et al. 2013. SLLISWD sequence in the 10FNIII domain initiates fibronectin fibrillogenesis. J. Biol. Chem. 288:21329–21340.

Griffith, L. G., and M. A. Swartz. 2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7(3):211–224.

Humphries, J. D., et al. 2015. Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol. 25:388–397.

Iwamoto, D. V., and D. A. Calderwood. 2015. Regulation of integrin-mediated adhesions. Curr. Opin. Cell Biol. 36:41–47.

Kolodkin, A. L., and M. Tessier-Lavigne. 2011. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3(6) pii: a001727.

Lawrence, M. B., and T. A. Springer. 1991. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873.

Leonova, E. I., and O. V. Galzitskaya. 2013. Structure and functions of syndecans in vertebrates. Biochemistry (Mosc). 78:1071–1085.

Muller, W. A. 2015. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res. 107:310–320.

Nelson, C. M., and M. J. Bissell. 2005. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15(5):342–352.

Nourshargh, S., and R. Alon. 2014. Leukocyte migration into inflamed tissues. Immunity 41:694–707.

Rougon, G., and O. Hobert. 2003. New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu. Rev. Neurosci. 26:207–238.

Springer, T. A., and M. L. Dustin. 2012. Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24:107–115.

Xiong, J. P., et al. 2001. Crystal structure of the extracellular segment of integrin αVβ3. Science 294:339–345.

Plant Tissues

Austefjord, M. W., H. H. Gerdes, and X. Wang. 2014. Tunneling nanotubes: diversity in morphology and structure. Commun. Integr. Biol. 7:e27934.

Bacic, A. 2006. Breaking an impasse in pectin biosynthesis. P. Natl. Acad. Sci. USA 103(15):5639–5640.

Chae, K., and E. M. Lord. 2011. Pollen tube growth and guidance: roles of small, secreted proteins. Ann. Bot. 108:627–636.

Delmer, D. P., and C. H. Haigler. 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab. Eng. 4:22–28.

Iwai, H., et al. 2000. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. P. Natl. Acad. Sci. USA 99:16319–16324.

Kohorn, B. D. 2015. The state of cell wall pectin monitored by wall associated kinases: a model. Plant Signal Behav. 10:e1035854.

Lee, D. K., and L. E. Sieburth. 2010. Plasmodesmata formation: poking holes in walls with ise. Curr. Biol. 20(11):R488–R490.

Lee, J. Y. 2014. New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Sci. 221–222:13–20.

Lord, E. M., and S. D. Russell. 2002. The mechanisms of pollination and fertilization in plants. Annu. Rev. Cell Dev. Biol. 18:81–105.

Lough, T. J., and W. J. Lucas. 2006. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57:203–232.

Pennell, R. 1998. Cell walls: structures and signals. Curr. Opin. Plant Biol. 1:504–510.

Satake, H., et al. 2015. Essences in metabolic engineering of lignan biosynthesis. Metabolites 5:270–290.

Sevilem, I., S. R. Yadav, and Y. Helariutta. 2015. Plasmodesmata: channels for intercellular signaling during plant growth and development. Methods Mol. Biol. 1217:3–24.

Somerville, C., et al. 2004. Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211.

Tan, A. S., et al. 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21:81–94.

Wang, P., and P. J. Hussey. 2015. Interactions between plant endomembrane systems and the actin cytoskeleton. Front. Plant Sci. 6:422.