As already noted, a hypothesis may initially be tentative. Commonly, in fact, it will provide only one of several possible ways of explaining existing data. With repeated observation and experimentation, however, a good hypothesis gathers strength, and we have more and more confidence in it. When a number of related hypotheses survive repeated testing and come to be accepted as good bases for explaining what we see in nature, scientists articulate a broader explanation that accounts for all the hypotheses and the results of their tests. We call this statement a theory, a general explanation of the world supported by a large body of experiments and observations (see Fig. 1.2).
7
8
Note that scientists use the word “theory” in a very particular way. In general conversation, “theory” is often synonymous with “hypothesis,” “idea,” or “hunch”—“I’ve got a theory about that.” But in a scientific context, the word “theory” has a specific meaning. Scientists speak in terms of theories only if hypotheses have withstood testing to the point where they provide a general explanation for many observations and experimental results. Just as a good hypothesis makes testable predictions, a good theory both generates good hypotheses and predicts their outcomes. Thus, scientists talk about the theory of gravity—