Name:		Sec./Group	Date:	
5. Data				
Free Fal	<u>ll:</u>			
g _{theo}	$= 9.8 \text{ m/s}^2$			
$\mathbf{g}_{\mathrm{expt}}$	=	m/s ² (as measured fr	om the position vs. time d	lata.)
%differe	nce =			
gexpt	=	m/s ² (as measu	ared from the velocity vs.	time data.)
%differe	nce =			
<u>Projecti</u>	le Motion:			
g_{theo}	$= 9.8 \text{ m/s}^2$			
g _{expt}	=	m/s ² (as measured fr	om the position vs. time d	lata.)
%differe	nce =			
g _{expt}	=	m/s ² (as measu	ared from the velocity vs.	time data.)
%differe	nce =			

6. Analysis

6.1 Free Fall.

1. What is the value for the acceleration due to gravity found using the <i>y</i> -position versus time plot?
2. What is the error between the acceleration due to gravity found using the <i>y</i> -position versus time plot and the accepted value of 9.8 m/s ² ?
3. What is the value for the acceleration due to gravity found using the <i>y</i> -component of velocity versus time plot?
4. What is the error between the value for the acceleration due to gravity found using the y-component of velocity versus time plot and the accepted value of 9.8 m/s^2 ?
5. Which method gave you a better approximation for the acceleration due to gravity? Explain why that method gave the better approximation.

6.2 Projectile Motion.

1.	What	is the	e value	for the	acceleration	n due to	gravity	found	using	the y-po	osition	versus	time
ρl	lot?												

- 2. What is the error between the acceleration due to gravity found using the y-position versus time plot and the accepted value of 9.8 m/s^2 ?
- 3. What is the value for the acceleration due to gravity found using the y-component of velocity versus time plot?
- 4. What is the error between the value for the acceleration due to gravity found using the y-component of velocity versus time plot and the accepted value of 9.8 m/s²?
- 5. Which method gave you a better approximation for the acceleration due to gravity? Explain why that method gave the better approximation.