Name: \qquad Sec./Group \qquad Date: \qquad
5. Data

Fiber Length $\Delta \mathrm{L}(\mathrm{m})$		t 1 (ns)		t2 (ns)		$\Delta \mathrm{t}=\mathrm{t} 2-\mathrm{t} 1$ (ns)		Avg. $\Delta \mathrm{t}$ (ns)	
		50ns/div	20ns/div	50ns/div	20ns/div	$50 \mathrm{~ns} / \mathrm{div}$	20ns/div	50ns/div	20ns/div
10	1								
	2								
	3								
20	1								
	2								
	3								
30	1								
	2								
	3								

6.1 Analysis

1) Plot ΔL vs. Δt for the three fiber lengths. From the slope of the straight line determine the velocity of light in the fiber, $c_{n}=\Delta L / \Delta t$.
2) Speed of light in vacuum, $c=n \cdot c_{n}$.(take $\left.n=1.5\right)$

6.2 Error Estimate

3) What is the uncertainty in your measurement of Δt ?
4) Suppose the length of the optical fiber is known to within a centimeter. What is the maximum estimated error in your measurement of the speed of light?

