# Chapter 1. Estimating the Parameters

true
Stat Tutor
true
true

3:19

### Question 1.1

Gkr28pAxhWIyRLaZev4zLXqiFgnw4/WUfUg/vCqEu7NKfCwRq5hJY9uQSPX5DIAI6X7B8dFqmhmfUbvymVpOL7aS2C6cJFQZarLjI/PMBK2roTEX/Jkm5Q==
Correct. β is the parameter symbol for the theoretical slope.
Incorrect. β is the parameter symbol for the theoretical slope.
2
Try again.

5:16

### Question 1.2

WbCmP/OONya7p72r3gWo79eiT7xSmUcicrR7FyOLmgzq9XS63P7lMlG+oPwR7L/Q90jVChJNC2luiI3DIVJt3Y/MkA93ftod6m45WrqDRbJE4duQnliTV/pTA+RImXCgGwbtTXlGQRV6O+ewnEQXFYhzoIm36q8np0Ls9QJJmC1uEVZ0kK1AAPRsglxySDYH52/fpu2uK1g30tslLg4QX7wac5GDcmuEHdJjSqkTpkCrtRspEpMC5C9iDZkfKk8uUS7m9eiMaz6gFXCA+8bgtgAnOotYMXXeVawTeFdgNQ44MnL+rqeGq90LoA73NUnF3XYK5EqOUUjtiHcB7C2N/85pd2WYzagdR0JnYxT0JOM=
Correct. “s” is computed using the residuals. Each residual measure the vertical distance of a y-value from the regression line. So, “s” measures the variability of the y’s about the regression line.
Incorrect. “s” is computed using the residuals. Each residual measure the vertical distance of a y-value from the regression line. So, “s” measures the variability of the y’s about the regression line.
2
Try again.

6:04

### Question 1.3

mSbl5IVZU5ZG6kihHbkK2CkRMeMGJr+qp0HPIuNp0HSR1rISN7HiUQ5Dncb95xcMzXa22mTeGvkaLWa06Na3HVRQDc2HJjCk2uxwtgLYe8WB4lqAcYOSstAmMlUUf8QSw9wIocsaJvRtxph3cN6MASZ0SCmpDgyvouAGDei+sPEMZsr3t+w77KMUQSwND+4SrCNO/DCiG4aWdcdCKCO1090h2ZDbfBtjye+ZQS7QxaMmGcVBnDBiLXMna3zS8S2lWdS4oLQBi4C/c/enP4GUXw==
Correct. This is a correct statement. “s” estimates this σ and measures the variability of the y’s about the regression line.
Incorrect. This is a correct statement. “s” estimates this σ and measures the variability of the y’s about the regression line.
2
Try again.

6:18

### Question 1.4

kfMXNs2KVdx6xjS4ZMkZ84R5s6MqEOzib3ABgE8302rnpTS8wgLjwdQG95uiqiQfY75G1U/IY892tFl6fBROCSbs7nqXfqxij20vPicH6sH+y5+4jUxg6wUo6QJCiUkceYuJE6I334NOs3Su
Correct. s = 4.2520 measures the variability of the y’s about the regression line.
Incorrect. s = 4.2520 measures the variability of the y’s about the regression line.
2
Try again.