Finding the Mass and the Center of Mass of a Lamina

Find the mass \(M\) and the center of mass \((\bar{x},\bar{y})\) of a lamina in the shape of a region \(R\) in the \(xy\)-plane that lies outside the circle \( x^{2}+y^{2}=a^{2}\) and inside the circle \(x^{2}+y^{2}=2ax.\) The mass density \(\rho \) is inversely proportional to the distance from the origin.

Figure 34 \(a\leq r\leq 2a\cos\theta\), \(-\dfrac{\pi}{3}\leq \theta\leq \dfrac{\pi}{3}\)

Solution Figure 34 illustrates the region \(R\). Since \(R\) involves two circles, we use polar coordinates. Then the two circles are given by \( r=a \) and by \(r=2a\cos \theta \). The circles intersect when \(a=2a\cos \theta \) or \(\cos \theta =\dfrac{1}{2},\) and the points of intersection are \(\left( a,\dfrac{\pi }{3}\right) \) and \(\left( a,-\dfrac{\pi }{3}\right) .\) The region \(R\) is given by \(a\leq r\leq 2a\cos \theta ,\) \(-\dfrac{\pi }{3}\leq \theta \leq \dfrac{\pi }{3}.\)

Since the distance of a point \((x,y)\) from the origin is \(\sqrt{x^{2}+y^{2}}\) , the mass density of the lamina at any point \((x,y)\) in \(R\) is \[ \rho (x,y)=\dfrac{k}{\sqrt{x^{2}+y^{2}}}=\dfrac{k}{r} \qquad {\color{#0066A7}{\hbox{\(r^{2} =x^{2} + y^{2}\)}}} \]

where \(k\) is the constant of proportionality. Since \(R\) does not contain the origin, the mass density \(\rho =\rho (x,y)\) is continuous on \(R.\) The mass \(M\) of the lamina is \[ \begin{eqnarray*} M &=&\displaystyle\iint\limits_{\kern-3ptR}\rho (x,y)\,{\it dA}=k\displaystyle\iint\limits_{\kern-3ptR}\dfrac{rdr\,d\theta }{r} =k\int_{-\pi /3}^{\pi /3}\int_{a}^{2a\cos \theta }\,dr\,d\theta \\[4pt] &=&k \int_{-\pi /3}^{\pi /3}(2a\cos \theta -a)\,d\theta =k\big[2a\sin \theta -a\theta \big] _{-\pi /3}^{\pi /3}= k\!\left( 2a\sqrt{3}-a\dfrac{2\pi }{3}\right)\\[4pt] &=&\dfrac{2ka}{3}(3\sqrt{3}-\pi ) \end{eqnarray*} \]

Both the mass density function and the region \(R\) are symmetric about the \(x\)-axis. So, the center of mass lies on the \(x\)-axis; that is, \(\bar{y}=0\). To find \(\bar{x}\), we first find \(M_{y}\). \[ \begin{eqnarray*} M_{y}& =&\displaystyle\iint\limits_{\kern-3ptR}x\rho (x,y)\,{\it dA}=\displaystyle\iint\limits_{\kern-3ptR}( r\cos \theta ) \left( \dfrac{k}{r}\right) r\,dr\,d\theta =k\int_{-\pi /3}^{\pi /3}\int_{a}^{2a\cos \theta }r\cos \theta \,dr\,d\theta\\[4pt] &=&\dfrac{k}{2}\int_{-\pi /3}^{\pi /3}(4a^{2}\cos ^{2}\theta -a^{2})\cos \theta \,d\theta = a^{2}\dfrac{k}{2}\int_{-\pi /3}^{\pi /3}(3-4\sin ^{2}\theta )\cos \theta \,d\theta\\[4pt] &=&\dfrac{a^{2}k}{2}\left[ 3\sin \theta -\dfrac{4\sin ^{3}\theta }{3} \right] _{-\pi /3}^{\pi /3}=ka^{2}\sqrt{3} \end{eqnarray*} \]

Then \[ \bar{x}=\dfrac{M_{y}}{M}=\dfrac{ka^{2}\sqrt{3}}{\dfrac{2ka}{3}(3\sqrt{3}-\pi )} =\dfrac{3a\sqrt{3}}{2(3\sqrt{3}-\pi )}\approx 1.265a \]

The center of mass is approximately \((1.265a,0)\).