Using the Comparison Test for Improper Integrals

Determine whether \(\int_{1}^{\infty }e^{-x^{2}}dx\) converges or diverges.

Solution By definition, \(\int_{1}^{\infty }e^{-x^{2}}dx=\lim\limits_{b\rightarrow \infty }\int_{1}^{b}e^{-x^{2}}dx\) converges if the limit exists and equals a real number. Since \(e^{-x^{2}}\) has no antiderivative, we use the Comparison Test for Improper Integrals. We proceed as follows: For \(x \ge 1,\) \[ \begin{eqnarray*} \begin{array}{rcl@{\qquad}l} x^{2} &\geq & x \\[3pt] -x^{2} &\leq & -x \\[3pt] 0 &\lt&e^{-x^{2}}\leq e^{-x} & {\color{#0066A7}{\hbox{ Since }{e>1}\hbox{, if }{a\leq b}\hbox{, then }{e}^{a}{\leq e}^{b}.}} \end{array} \end{eqnarray*} \]

Figure 28 illustrates this.

Based on the Comparison Test, if \(\int_{1}^{\infty }e^{-x}dx\) converges, so does \(\int_{1}^{\infty }e^{-x^{2}}dx.\) We investigate \(\int_{1}^{\infty }e^{-x}dx.\) \[ \begin{eqnarray*} \int_{1}^{\infty }e^{-x}dx :\quad\!\!\!\! \lim\limits_{b\rightarrow \infty }\int_{1}^{b}e^{-x}dx &=& \lim\limits_{b\rightarrow \infty }\!\big[-e^{-x}\big] _{1}^{b}=\lim\limits_{b\rightarrow \infty }[-e^{-b}+e^{-1}] =\lim\limits_{b\rightarrow \infty }\left[ \dfrac{1}{e}-\dfrac{1}{e^{b}} \!\right] \\[5pt] &=& \lim\limits_{b\rightarrow \infty }\dfrac{1}{e}-\lim\limits_{b \rightarrow \infty }\dfrac{1}{e^{b}}=\dfrac{1}{e} \end{eqnarray*} \]

Since \(\int_{1}^{\infty }e^{-x}dx\) converges, we conclude that \( \int_{1}^{\infty}e^{-x^{2}}dx\) converges.