When you finish this section, you should be able to:
When working with vectors there are three types of multiplication. In Sections 10.1 and 10.2, we defined the scalar multiple of a vector \(\mathbf{v}\) as the product of a scalar and a vector. The resulting product is a vector. Now we discuss the second of the three types of multiplication, the dot product. The dot product is the product of two vectors, but the result is a scalar. In Section 10.5, we investigate the third type of multiplication, called the cross product. One important use of the dot product is to find the angle between two vectors.
If \(v=v_{1} {\bf i}+v_{2} \mathbf{j}\) and \(\mathbf{w}=w_{1} \mathbf{i}+w_{2}\mathbf{j}\) are two vectors in the plane, the dot product \(\mathbf{v\,{\cdot}\, w}\) is defined as \[\bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v\,{\cdot}\, w}=v_{1}w_{1}+v_{2}w_{2} } \]
Similarly, if \(\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3}\mathbf{k} \) and \(\mathbf{w}=w_{1} \mathbf{i}+w_{2} \mathbf{j}+w_{3}\mathbf{k}\) are two vectors in space, the dot product \(\mathbf{v\,{\cdot}\, w}\) is defined as \[\bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v\,{\cdot}\, w}=v_{1}w_{1}+v_{2}w_{2}+v_{3}w_{3} } \]
The dot product of two vectors is not a vector. It is a scalar. The dot product is sometimes called the scalar product.
(a) If \(\mathbf{v}=2\mathbf{i}-3\mathbf{j}\) and \(\mathbf{w}= \mathbf{i}+\mathbf{j}\), then \[ \begin{equation*} \begin{array}{rcl@{\quad}rcl} \mathbf{v}\,{\cdot}\, \mathbf{w} &=& (2)(1)+(-3)(1)=2-3=-1 & \mathbf{w\,{\cdot}\, v} &=& (1) (2) +(1) (-3) =2-3=-1 \\ \mathbf{v\,{\cdot}\, v} &=& 2^{2}+ (-3) ^{2}=4+9=13 & \mathbf{w\,{\cdot}\, w} &=& 1^{2}+1^{2}=2 \end{array} \end{equation*} \]
(b) If \(\mathbf{v}=2\mathbf{i}-\mathbf{j}+\mathbf{k}\) and \( \mathbf{w}=4\mathbf{i}+2\mathbf{j}-\mathbf{k}\), then \[ \begin{array}{rcl@{\quad}rcl} \mathbf{v}\,{\cdot}\, \mathbf{w}&=&(2)(4)+(-1)(2)+(1)(-1) & \mathbf{w\,{\cdot}\, v}&=&(4) (2) +(2) (-1) +(-1) (1) \\ &=&8-2-1=5 & &=&8-2-1=5\\ \mathbf{v}\,{\cdot}\, \mathbf{v}&=&4+1+1=6 & \mathbf{w}\,{\cdot}\, \mathbf{w}&=&16+4+1=21 \end{array} \]
Problem 7(a).
716
The results from Example 1 suggest some of the properties of the dot product.
If \(\mathbf{u}\), \(\mathbf{v}\), and \(\mathbf{w}\) are vectors and \(a\) is any scalar, then:
We prove the magnitude property \(\mathbf{v}\,{\cdot}\, \mathbf{v}=\left\Vert \mathbf{v} \right\Vert ^{2}\) and the commutative property for vectors in space. The remaining proofs are left as exercises (see Problems 78-82).
To show \(\mathbf{v}\,{\cdot}\, \mathbf{v}=\left\Vert \mathbf{v} \right\Vert ^{2}\), we let \(\mathbf{v}=v_{1}\mathbf{i}+v_{2}\mathbf{j}+v_{3} \mathbf{k}\). Then \[ \begin{equation*} \mathbf{v}\,{\cdot}\, \mathbf{v} =v_{1}v_{1}+v_{2}v_{2}+v_{3}v_{3}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=\left\Vert \mathbf{v}\right\Vert ^{2} \end{equation*} \]
Commutative Property: Let \(\mathbf{u}=u_{1}\mathbf{i}+u_{2}\mathbf{j} +u_{3}\mathbf{k}\) and \(\mathbf{v}=v_{1}\mathbf{i}+v_{2}\mathbf{j} +v_{3}\mathbf{k}\). Then \[ \mathbf{u}\,{\cdot}\, \mathbf{v} =u_{1}v_{1}+u_{2}v_{2}+u_{3}v_{3}=v_{1}u_{1}+v_{2}u_{2}+v_{3}u_{3}=\mathbf{v} \,{\cdot}\, \mathbf{u} \]
A consequence of the property \(\mathbf{v}\,{\cdot}\, \mathbf{v}=\left\Vert \mathbf{ v}\right\Vert ^{2}\) is that for any vector \(\mathbf{v}\), \[\bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v}\,{\cdot}\, \mathbf{v}\geq 0\quad\hbox{and}\ \quad \mathbf{v }\,{\cdot}\, \mathbf{v}=0\quad\hbox{if and only if}\quad \mathbf{v}=\mathbf{0} } \]
If \(\mathbf{v}\) and \(\mathbf{w}\) are two nonzero vectors, we can position \( \mathbf{v}\) and \(\mathbf{w}\) so they have the same initial point. Then the vectors \(\mathbf{v}\), \(\mathbf{w}\), and \(\mathbf{w-v}\) form a triangle, as shown in Figure 35. We want to find an expression for the angle \(\theta\) between the vectors \(\mathbf{v}\) and \(\mathbf{ w}\).
Since the sides of the triangle have lengths \(\Vert \mathbf{v}\Vert ,\Vert \mathbf{w}\Vert \), and \(\Vert \mathbf{w}-\mathbf{v}\Vert \), we can use the Law of Cosines to find the cosine of angle \(\theta .\) \[ \begin{equation*} \Vert \mathbf{w}-\mathbf{v}\Vert ^{2}=\Vert \mathbf{v}\Vert ^{2}+\Vert \mathbf{w}\Vert ^{2}-2\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta\tag{1} \end{equation*} \]
Now we use properties of the dot product to write this equation in terms of dot products. Since \(\mathbf{v}\,{\cdot}\, \mathbf{v}=\Vert \mathbf{v}\Vert ^{2},\) we can write (1) in the form \[ \begin{equation*} (\mathbf{w}-\mathbf{v})\,{\cdot}\, (\mathbf{w}-\mathbf{v})=\mathbf{v}\,{\cdot}\, \mathbf{ v}+\mathbf{w}\,{\cdot}\, \mathbf{w}-2\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta\tag{2} \end{equation*} \]
The Law of Cosines states that \( c^{2}=a^{2}+b^{2}-2ab \cos \theta\), where \(a,b\), and \(c\) , are the lengths of the sides of a triangle and \(\theta\) is the angle opposite the side of length \(c\). The Law of the Cosines is discussed in Appendix A.4, p. A-37.
Now we use the distributive property twice on the term \((\mathbf{w}-\mathbf{v })\,{\cdot}\, (\mathbf{w}-\mathbf{v})\). \[ \begin{eqnarray*} (\mathbf{w}-\mathbf{v})\,{\cdot}\, (\mathbf{w}-\mathbf{v}) &=&\mathbf{w}\,{\cdot}\, \left( \mathbf{w-v}\right) -\mathbf{v}\,{\cdot}\, ( \mathbf{w-v}) \\[3pt] &=&\mathbf{w\,{\cdot}\, w-w\,{\cdot}\, v-v\,{\cdot}\, w+v\,{\cdot}\, v} \\[3pt] &=&\mathbf{w\,{\cdot}\, w+v\,{\cdot}\, v-2}( \mathbf{v\,{\cdot}\, w}) \end{eqnarray*} \]
717
We substitute this result back into equation (2) and simplify. This yields \[ \begin{eqnarray*} \mathbf{w\,{\cdot}\, w+v\,{\cdot}\, v} -2 ( \mathbf{v\,{\cdot}\, w}) & =&\mathbf{v} \,{\cdot}\, \mathbf{v}+\mathbf{w}\,{\cdot}\, \mathbf{w}-2\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta \\ \mathbf{v}\,{\cdot}\, \mathbf{w}&=& \Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta \end{eqnarray*} \]
We have proved the following result.
If \(\mathbf{v}\,{\cdot}\, \mathbf{w} >0,\) the angle between \(\mathbf{v}\) and \(\mathbf{w}\) is acute. If \( \mathbf{v}\,{\cdot}\, \mathbf{w} \lt 0,\) the angle between \(\mathbf{v}\) and \(\mathbf{w}\) is obtuse.
The angle \(\theta \), where \(0\leq \theta \leq \pi\), between two nonzero vectors \(\mathbf{v}\) and \(\mathbf{w}\) is given by the formula \[\bbox[5px, border:1px solid black, #F9F7ED]{ \cos \theta =\dfrac{\mathbf{v }\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert } } \]
Find the angle between the vectors \(\mathbf{v}=2\mathbf{i}-\mathbf{j}+ \mathbf{k}\) and \(\mathbf{w}=- \mathbf{i}+\mathbf{j}\).
Solution We find \(\mathbf{v}\,{\cdot}\, \mathbf{w}\), \(\Vert \mathbf{v} \Vert ,\) and \(\Vert \mathbf{w}\Vert.\) \[ \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w} &=&(2) (-1) +(-1) (1) +(1) (0) =-2-1+0=-3 \\[4pt] \Vert \mathbf{v}\Vert &=&\sqrt{2^{2}+(-1) ^{2}+1^{2}}=\sqrt{6} \\[4pt] \Vert \mathbf{w}\Vert &=&\sqrt{(-1) ^{2}+1^{2}}=\sqrt{2} \end{eqnarray*} \]
Then if \(\theta\) is the angle between \(\mathbf{v}\) and \(\mathbf{w}\), \[ \begin{equation*} \cos \theta =\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert }=\dfrac{-3}{( \sqrt{6}) (\sqrt{2}) }= \dfrac{-3}{\sqrt{12}}=-\dfrac{\sqrt{3}}{2} \end{equation*} \]
Since \(0\leq \theta \leq \pi\), the angle \(\theta\) between \(\mathbf{v}\) and \(\mathbf{w}\) is \(\dfrac{5\pi}{6}\) radians. See Figure 36.
Problem 7(b).
An airplane has an air speed of \(400\) km/h and is headed east. Find the true direction of the airplane relative to the ground if there is a northwesterly wind of \(80~\text{km}/~\text{h}\).
Solution This is the same situation from Example 8 of Section 10.3. There, we found the velocity of the airplane relative to the ground is \( \mathbf{v}_{\mathrm{g}}=( 400+40\sqrt{2}) \mathbf{i}-40\sqrt{2 }\mathbf{j}\).
The angle \(\theta\) between \(\mathbf{v}_{\mathrm{g}}\) and the vector \( \mathbf{i}\) (the positive \(x\)-axis) is given by \[ \begin{eqnarray*} \cos \theta &=&\dfrac{\mathbf{v}_{\mathrm{g}}\,{\cdot}\, \mathbf{i}}{\Vert \mathbf{v}_{\mathrm{g}}\Vert \Vert \mathbf{i}\Vert }&=&\dfrac{ 400+40\sqrt{2}}{460.06}\approx 0.9924 \\[5pt] \theta &\approx &\cos ^{-1}(0.9924) \approx 7.07^\circ \end{eqnarray*} \]
The true direction of the plane is approximately \(7.07^\circ\) south of east. See Figure 37.
Problem 35.
Two nonzero vectors are orthogonal if the angle between them is a right angle (\(90^\circ\)). Whether two nonzero vectors are parallel or orthogonal is determined by the angle \(\theta\) between the two vectors. \[\bbox[5px, border:1px solid black, #F9F7ED]{ \begin{array} \hbox~\text{If the angle \(\theta\) between two nonzero vectors \(\mathbf{v}\) and \(\mathbf{ w}\) is \(0\) or \(\pi\), the vectors \(\mathbf{v}\) and \(\mathbf{w}\) are parallel.} \\ \hbox{If the angle \(\theta\) between two nonzero vectors \(\mathbf{v}\) and \(\mathbf{ w}\) is \(\dfrac{\pi }{2}\), the vectors \(\mathbf{v}\) and \(\mathbf{w}\) are orthogonal.} \end{array} } \]
718
Two nonzero vectors \(\mathbf{v}\) and \(\mathbf{w}\) are orthogonal if and only if \[\bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v}\,{\cdot}\, \mathbf{w}=0 } \]
Orthogonal, perpendicular, and normal are all terms that mean “meet at a right angle.” It is customary to refer to two vectors as orthogonal, two lines as perpendicular, and a line and a plane or a vector and a plane as normal.
We use the formula for the angle between two nonzero vectors, namely \(\cos \theta =\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{w}\right\Vert }.\)
If the vectors \(\mathbf{v}\) and \(\mathbf{w}\) are orthogonal, then the angle \(\theta\) between \(\mathbf{v}\) and \(\mathbf{w}\) is \(\dfrac{\pi}{2}\). Since \(\cos\dfrac{\pi}{2}=0\), it follows that \(\mathbf{v}\,{\cdot}\, \mathbf{w}=0.\)
Conversely, if \(\mathbf{v}\,{\cdot}\, \mathbf{w}=0\), then \(\mathbf{v}=\mathbf{0} \) or \(\mathbf{w}=\mathbf{0}\), or \(\cos \theta =0\). Since \(\mathbf{v}\) and \( \mathbf{w}\) are nonzero vectors, \(\cos \theta =0,\) so \(\theta =\dfrac{\pi }{2 }\) and \(\mathbf{v}\) and \(\mathbf{w}\) are orthogonal.
The vectors \(\mathbf{v}=2\mathbf{i}-\mathbf{j}+5\mathbf{k}\) and \(\ \mathbf{w}=3\mathbf{i}+\mathbf{j}-\mathbf{k}\) are orthogonal, since \[ \mathbf{v}\,{\cdot}\, \mathbf{w}=6-1-5=0 \]
Since \(\mathbf{i}\,{\cdot}\, \mathbf{j}=1\,{\cdot}\, 0+ 0\,{\cdot}\, 1=0\), the standard basis vectors \(\mathbf{i}\) and \(\mathbf{j}\) in the plane are orthogonal. The standard basis vectors \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\) in space are mutually orthogonal, since \(\mathbf{i}\,{\cdot}\, \mathbf{j}=0,\) \(\mathbf{j}\,{\cdot}\, \mathbf{k}=0,\) and \(\mathbf{k}\,{\cdot}\, \mathbf{i}=0.\)
Find a scalar \(a\) so that the vectors \(\mathbf{v}=2a\mathbf{i}+\mathbf{j}- \mathbf{k}\) and \(\mathbf{w}=\mathbf{i}-a \mathbf{j}+\mathbf{k}\) are orthogonal.
Solution The vectors \(\mathbf{v}\) and \(\mathbf{w}\) are orthogonal if \(\mathbf{v}\,{\cdot}\, \mathbf{w}=0.\) So, \[ \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w}=2a-a-1&=& 0 \\[3pt] a&=& 1 \end{eqnarray*} \]
The vectors \(\mathbf{v}=2\mathbf{i}+\mathbf{j}-\mathbf{k}\) and \(\mathbf{w}= \mathbf{i}-\mathbf{j}+\mathbf{k}\) are orthogonal.
Problem 17.
A nonzero vector \(\mathbf{v}\) in space can be described by specifying its direction, given by three direction angles \(\alpha , \beta , \gamma ,\) and its magnitude \(\left\Vert \mathbf{v}\right\Vert\). The direction angles as shown in Figure 38 are defined as \[ \begin{eqnarray*} \alpha & =&\hbox{Angle between }\mathbf{v}\hbox{ and } \mathbf{i}\hbox{, the positive \(x\)-axis}, 0\leq \alpha \leq \pi \\ \beta & =&\hbox{Angle between }\mathbf{v}\hbox{ and } \mathbf{j}\hbox{, the positive \(y\)-axis}, 0\leq \beta \leq \pi \\ \gamma & =&\hbox{Angle between }\mathbf{v}\hbox{ and } \mathbf{k}\hbox{, the positive \(z\)-axis}, 0\leq \gamma \leq \pi \end{eqnarray*} \]
We seek expressions for \(\alpha , \beta ,\) and \(\gamma\) in terms of the components of a nonzero vector \(\mathbf{v}\). Let \(\mathbf{v}=v_{1}\mathbf{i} +v_{2}\mathbf{j}+v_{3}\mathbf{k}\) denote a nonzero vector. The angle \(\alpha \) between \(\mathbf{v}\) and \(\mathbf{i}\), which lies on the positive \(x\) -axis, is given by \[ \begin{equation*} \cos \alpha =\frac{\mathbf{v}\,{\cdot}\, \mathbf{i}}{\Vert \mathbf{v}\Vert \Vert \mathbf{i}\Vert }=\frac{v_{1}}{\Vert \mathbf{v}\Vert } \end{equation*} \]
Similarly, \[ \begin{equation*} \cos \beta =\dfrac{\mathbf{v\,{\cdot}\, j}}{\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{j}\right\Vert }=\frac{v_{2}}{\Vert \mathbf{v}\Vert }\qquad\hbox{and}\qquad \cos \gamma =\dfrac{\mathbf{v\,{\cdot}\, k}}{\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{k}\right\Vert }=\frac{v_{3}}{\Vert \mathbf{v}\Vert } \end{equation*} \]
719
The components of \(\mathbf{v}\) are \[ v_{1}=\left\Vert \mathbf{v}\right\Vert \cos \alpha\qquad v_{2}=\left\Vert \mathbf{v}\right\Vert \cos \beta\qquad v_{3}=\left\Vert \mathbf{v}\right\Vert \cos \gamma \]
If \(\mathbf{v}=v_{1}\mathbf{i}+v_{2}\mathbf{j}+v_{3}\mathbf{k}\) is a nonzero vector in space, then \[\bbox[5px, border:1px solid black, #F9F7ED]{ \begin{array}{l} \cos \alpha =\dfrac{v_{1}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}}=\dfrac{ v_{1}}{\Vert \mathbf{v}\Vert }\qquad \cos \beta =\dfrac{v_{2}}{ \sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}}=\dfrac{v_{2}}{\Vert \mathbf{v}\Vert }\\ \cos \gamma =\dfrac{v_{3}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2} }}=\dfrac{v_{3}}{\Vert \mathbf{v}\Vert } \end{array} } \] \[\bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v=}\left\Vert \mathbf{v}\right\Vert [ \cos \alpha \mathbf{i} +\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}] } \]
This result gives the vector \(\mathbf{v}\) when its magnitude and direction are known. The numbers \(\cos \alpha ,\) \(\cos \beta ,\) and \(\cos \gamma \) are called the direction cosines of the vector \(\mathbf{v}\). In Problem 62, you are asked to show that \(\cos ^{2} \alpha +\cos ^{2}\beta +\cos ^{2}\gamma =1.\) In other words, the vector \(\cos \alpha \mathbf{i}+\cos \beta \mathbf{j} +\cos \gamma \mathbf{k}\) is a unit vector.
Solution (a) The magnitude of \(\mathbf{v}\) is \[ \begin{equation*} \Vert \mathbf{v}\Vert =\sqrt{(-3)^{2}+2^{2}+(-6)^{2}}=\sqrt{49}=7 \end{equation*} \]
The direction cosines of the vector \(\mathbf{v}\) are \[ \cos \alpha =\dfrac{v_{1}}{\left\Vert \mathbf{v}\right\Vert }=\dfrac{-3}{7} \qquad \cos \beta =\dfrac{v_{2}}{\left\Vert \mathbf{v}\right\Vert }= \dfrac{2}{7} \qquad \cos \gamma =\dfrac{v_{3}}{\left\Vert \mathbf{v}\right\Vert }=\dfrac{-6}{7} \]
(b) Now \(\mathbf{v=}\left\Vert \mathbf{v}\right\Vert \left[ \cos \alpha {\bf i} + \cos \beta \mathbf{j}+\cos \gamma \mathbf{k}\right] =7\!\left( -\dfrac{3}{7}\mathbf{i}+\dfrac{2}{7}\mathbf{j}-\dfrac{6}{7}\mathbf{k }\right)\! .\)
Problem 19.
In many applications, it is important to find “how much” of a vector is applied along a given direction. In Figure 39, the force \(\mathbf{F}\) due to gravity pulls the block toward the center of Earth. To study the effect of gravity on the block, it is necessary to determine how much of \(\mathbf{F}\) is actually pulling the block down the incline \((\mathbf{F}_{1})\) and how much is pressing the block against the incline \((\mathbf{F}_{2})\) at a right angle to the incline. Decomposing \(\mathbf{F}\) into \(\mathbf{F}_{1}\) and \(\mathbf{F}_{2}\) allows us to determine when friction is overcome, allowing the block to slide down the incline.
The vector \(\mathbf{v}_{2}\) orthogonal to \(\mathbf{w}\) is sometimes denoted by orth\(_{\bf w} {\bf v}\).
Suppose \(\mathbf{v}\) and \(\mathbf{w}\) are two nonzero vectors with the same initial point \(P\). We seek to decompose \(\mathbf{v}\) into two vectors: \( \mathbf{v}_{1}\), parallel to \(\mathbf{w}\), and \(\mathbf{v}_{2}\), orthogonal to \(\mathbf{w}\). The vector \(\mathbf{v}_{1}\) is called the vector projection of \(\mathbf{v}\) onto \(\mathbf{w}\) and is denoted by proj\(_{\mathbf{w}}\mathbf{v}\). See Figure 40(a) and 40(b) on page 720.
We obtain the vector \(\mathbf{v}_{1}\) as follows: We drop a perpendicular from the terminal point of \(\mathbf{v}\) to the line containing \(\mathbf{w}\). The vector \(\mathbf{v}_{1}\) is the vector from \(P\) to the intersection of the line containing \(\mathbf{w}\) and the perpendicular. Since \(\mathbf{v}=\mathbf{v}_{1}+\mathbf{v} _{2}\), the dot product \(\mathbf{v}\,{\cdot}\, \mathbf{w}\) is \[ \begin{eqnarray*} &&\mathbf{v}\,{\cdot}\, \mathbf{w}\underset{\underset{{\color{#0066A7}{\hbox{\(\mathbf{v=v}_{1}+\mathbf{v}_{2}\)}}}}{\color{#0066A7}{\uparrow}}}{=}(\mathbf{v}_{1}+\mathbf{v}_{2})\,{\cdot}\, \mathbf{w} \underset{\underset{{\color{#0066A7}{\hbox{Distribute}}}}{\color{#0066A7}{\uparrow}}}{=}\mathbf{v}_{1}\,{\cdot}\, \mathbf{w}+\mathbf{v }_{2}\,{\cdot}\, \mathbf{w}\tag{1} \end{eqnarray*} \]
720
Since \(\mathbf{v}_{2}\) is orthogonal to \(\mathbf{w}\), the dot product \( \mathbf{v}_{2}\,{\cdot}\, \mathbf{w}=0\). Since \(\mathbf{v}_{1}\) is parallel to \( \mathbf{w}\), there is a scalar \(a\) for which \(\mathbf{v}_{1}=a\mathbf{w}\). We make these substitutions in equation (1). \[ \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w} &=&a\,\mathbf{w}\,{\cdot}\, \mathbf{w}+0=a\Vert \mathbf{w}\Vert ^{2} \\[5pt] a &=&\frac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}} \end{eqnarray*} \]
Then \[ \begin{equation*} \mathbf{v}_{1}=a\mathbf{w}=\frac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w} \Vert ^{2}}\,\mathbf{w} \end{equation*} \]
If \(\mathbf{v}\) and \(\mathbf{w}\) are two nonzero vectors, the vector projection of \(\mathbf{v}\) onto \(\mathbf{w}\) is \[\bbox[5px, border:1px solid black, #F9F7ED]{ \hbox{proj}_{\mathbf{w}}\mathbf{v}=\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}}\mathbf{w} } \]
The decomposition of \(\mathbf{v}\) into \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\) , where \(\mathbf{v}_{1}\) is parallel to \(\mathbf{w}\) and \(\mathbf{v}_{2}\) is orthogonal to \(\mathbf{w}\), is \[\bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v}_{1}=\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}}\mathbf{w}\qquad \mathbf{v}_{2}= \mathbf{v-v}_{1} } \]
Find the vector projection of \(\mathbf{v}=2\mathbf{i}-\mathbf{j}+\mathbf{k}\) onto \(\mathbf{w}=\mathbf{i}+\mathbf{j}+\mathbf{k}\). Decompose \(\mathbf{v}\) into two vectors \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\), where \(\mathbf{v} _{1} \) is parallel to \(\mathbf{w}\) and \(\mathbf{v}_{2}\) is orthogonal to \( \mathbf{w}\).
Solution We use the formula for the projection of \(\mathbf{v}\) onto \(\mathbf{w}.\) \[ \begin{eqnarray*} \mathbf{v}_{1}& =&\hbox{proj}_{\mathbf{w}}\mathbf{v}=\frac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}}\mathbf{w} \underset{\underset{\underset{{\color{#0066A7}{\hbox{\(\Vert \mathbf{w}\Vert =\sqrt{1^{2}+1^{2} +1^{2}} =\sqrt{3}\)}}}} {\color{#0066A7}{\hbox{\(\mathbf{v}\,{\cdot}\, \mathbf{w=}2-1+1=2\)}}}} {\color{#0066A7}{\uparrow }}}{=}\frac{2}{(\sqrt{3})^{2}}\mathbf{w}=\frac{2}{3}( \mathbf{i}+\mathbf{j}+\mathbf{k})=\frac{2}{3}\,\mathbf{i}+\frac{2}{3}\, \mathbf{j}+\frac{2}{3}\,\mathbf{k} \\ \mathbf{v}_{2}& =&\mathbf{v}-\mathbf{v}_{1}=(2\mathbf{i}-\mathbf{j}+\mathbf{k} )-\left( \frac{2}{3}\,\mathbf{i}+\frac{2}{3}\,\mathbf{j}+\frac{2}{3}\, \mathbf{k}\right) =\frac{4}{3}\,\mathbf{i}-\frac{5}{3}\,\mathbf{j}+\frac{1}{3 }\,\mathbf{k} \end{eqnarray*} \]
Problem 27.
Work is defined as the energy transferred to or from an object by a force acting on the object.
The work \(W\) done by a constant force \(\mathbf{F}\) in moving an object from \(A\) to \(B\) along a straight line in the direction of \(\mathbf{F}\) is defined to be \[ W=\Vert \mathbf{F}\Vert \Vert \skew5\overrightarrow{\it AB}\Vert \qquad {\color{#0066A7}{\hbox{Work \(=\) force } {\times} \hbox{ distance}}} \]
In this definition, it is assumed that the constant force \(\mathbf{F}\) is applied along the line of motion \(\skew5\overrightarrow{\it AB}\), as shown in Figure 41.
If the constant force \(\mathbf{F}\) is not along the line of motion, but instead is at an angle \(\theta \) to the direction of motion, as in Figure 42, then the work \(W\) done by \(\mathbf{F}\) in moving an object from \(A\) to \(B\) is defined as the dot product. \[\bbox[5px, border:1px solid black, #F9F7ED]{ W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB} } \]
721
This definition is compatible with the force times distance definition, since \[ \begin{eqnarray*} W& =&(\hbox{Amount of force in the direction of }\skew5\overrightarrow{\it AB})(\hbox{ distance}) \\[4pt] & =& \Vert \hbox{proj}_{\skew5\overrightarrow{\it AB}} \mathbf{F} \Vert \Vert \skew5\overrightarrow{\it AB} \Vert = \left[ \dfrac{\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}}{ \Vert \skew5\overrightarrow{\it AB} \Vert ^{2}} \Vert \skew5\overrightarrow{\it AB} \Vert \right] \Vert \skew5\overrightarrow{\it AB} \Vert =\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB} \end{eqnarray*}\]
Find the work done by a force of 2 newtons (N) acting in the direction \( \mathbf{i}+\mathbf{j}+\mathbf{k}\) in moving an object 1 m from (0, 0, 0) to (1, 0, 0).
Solution We need to express the force \(\mathbf{F}\) in terms of its magnitude and direction. The unit vector \(\mathbf{u}\) in the direction \( \mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k}\) is \[ \mathbf{u}=\dfrac{\mathbf{v}}{\left\Vert \mathbf{v}\right\Vert }=\dfrac{ \mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}=\dfrac{1}{\sqrt{3}}\mathbf{i}+ \dfrac{1}{\sqrt{3}}\mathbf{j}+\dfrac{1}{\sqrt{3}}\mathbf{k} \]
Since the force vector \(\mathbf{F}\) has magnitude \(2,\) we have \[ \mathbf{F}=2\left( \frac{1}{\sqrt{3}}\mathbf{i}+\dfrac{1}{\sqrt{3}}\mathbf{j} +\dfrac{1}{\sqrt{3}}\mathbf{k}\right) =\dfrac{2}{\sqrt{3}}( \mathbf{i}+ \mathbf{j}+\mathbf{k}) \]
The line of motion of the object from \(( 0,0,0) \) to \(\left( 1,0,0\right)\) is \(\skew5\overrightarrow{\it AB}=\mathbf{i}\). The work \(W\) is therefore \[ W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}=\frac{2}{\sqrt{3}}(\mathbf{i}+\mathbf{j }+\mathbf{k})\,{\cdot}\ \mathbf{i}=\frac{2}{\sqrt{3}}\hbox{ joules} \]
\(1\) joule \(=1\) newton\(\cdot\)meter; \(1~\text {J} =1~\text {N}\cdot\ \text{m}\).
Problem 43.
Figure 43 shows a man pushing on a lawn mower handle with a force of 30 lb. How much work is done in moving the lawn mower a distance of 75 ft if the handle makes an angle of \(60^{\circ }\) with the ground?
Solution We set up the coordinate system so that the lawn mower is moved from \((0,0)\) to \((75,0)\). Then the motion occurs along \( \skew5\overrightarrow{\it AB}=75\,\mathbf{i}\). The force vector \(\mathbf{F}\), as shown in Figure 44, makes an angle of \(300^\circ\) to the positive \(x\)-axis. Since \(\Vert \mathbf{F} \Vert = 30\), \(\mathbf{F}\) is given by \[ \begin{equation*} \mathbf{F}=30[ (\cos 300^{\circ })\mathbf{i}+(\sin 300^{\circ })\mathbf{ j}] =30\left[ \dfrac{1}{2}\mathbf{i}-\dfrac{\sqrt{3}}{2}\mathbf{j} \right] =15\mathbf{i}-15\sqrt{3}\mathbf{j} \end{equation*} \]
Then the work \(W\) done is \[ W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}=(15\mathbf{i}-15\sqrt{3}\mathbf{j} )\,{\cdot}\, 75\mathbf{i}=1125 \hbox{ft-lb} \]