849
When you finish this section, you should be able to:
The Chain Rule is discussed in Section 3.1, pp. 198-205.
Recall that the Chain Rule is used to find the derivative of a composite function. For functions of two or more variables, there are several versions of the Chain Rule. The first Chain Rule is used when the independent variables are each a function of a single variable \(t.\) For example, for the function \(z=f(x,y)\) of two variables, if \(x=x(t)\) and \(y=y(t)\), then the composite function \(z=f( x(t), y(t))\) is a function of a single independent variable \(t\).
If \(x=x(t)\) and \(y=y(t)\) are differentiable functions of \(t\), and if \( z=f(x,y)\) is a differentiable function of \(x\) and \(y\), then \(z=f(x(t),y(t))\) is a differentiable function of \(t\). Moreover, \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial z}{\partial y}\dfrac{dy}{dt} }}}\]
Since \(\dfrac{dz}{dt}=\lim\limits_{\Delta t\rightarrow 0} \dfrac{\Delta z}{\Delta t}\), we seek an expression for \(\Delta z\). Since \( z=f(x,y)\) is differentiable, the change \(\Delta z\) is \begin{equation*} \Delta z=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y} \Delta y+\eta _{1}\Delta x+\eta _{2}\Delta y \end{equation*}
where \(\eta _{1}\) and \(\eta _{2}\) are functions of \(\Delta x\) and \(\Delta y\) and \(\lim\limits_{(\Delta x, \Delta y)\rightarrow (0, 0)}\eta _{1}=0\) and \( \lim\limits_{(\Delta x, \Delta y)\rightarrow (0, 0)} \eta _{2}=0\). Next we divide both sides by \(\Delta t.\) \begin{equation*} \dfrac{\Delta z}{\Delta t}=\frac{\partial z}{\partial x}\dfrac{\Delta x}{ \Delta t}+\frac{\partial z}{\partial y}\dfrac{\Delta y}{\Delta t}+\eta _{1} \dfrac{\Delta x}{\Delta t}+\eta _{2}\dfrac{\Delta y}{\Delta t} \end{equation*}
Then \[ \frac{dz}{dt}=\lim_{\Delta t\rightarrow 0}\frac{\Delta z}{\Delta t} =\lim_{\Delta t\rightarrow 0}\;\left[ \frac{\partial z}{\partial x}\frac{ \Delta x}{\Delta t}+\frac{\partial z}{\partial y}\frac{\Delta y}{\Delta t} +\eta _{1}\frac{\Delta x}{\Delta t}+\eta _{2}\frac{\Delta y}{\Delta t}\right] \]
In the right-hand expression, \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{ \partial z}{\partial y}\) are evaluated at \((x(t),y(t))\) and do not depend on \(\Delta t\). Also, since \(x=x( t)\) and \(y=y( t)\) are differentiable, \begin{equation*} \lim\limits_{\Delta t\rightarrow 0}\dfrac{\Delta x}{\Delta t}=\frac{dx}{dt} \qquad \hbox{and}\qquad \lim_{\Delta t\rightarrow 0}\dfrac{\Delta y}{\Delta t }=\dfrac{dy}{dt} \end{equation*}
Furthermore, as \(\Delta t\rightarrow 0\), then \((\Delta x,\Delta y)\rightarrow (0,0)\), so that \(\eta _{1}\rightarrow 0\) and \(\eta _{2}\rightarrow 0\). Putting this all together, we get \begin{eqnarray*} \frac{dz}{dt}& =&\frac{\partial z}{\partial x}\lim_{\Delta t\rightarrow 0} \frac{\Delta x}{\Delta t}+\frac{\partial z}{\partial y}\lim_{\Delta t\rightarrow 0}\frac{\Delta y}{\Delta t}+\lim_{\Delta t\rightarrow 0}\eta _{1}\cdot \lim_{\Delta t\rightarrow 0}\frac{\Delta x}{\Delta t}+\lim_{\Delta t\rightarrow 0}\eta _{2}\cdot \lim_{\Delta t\rightarrow 0}\frac{\Delta y}{ \Delta t} \nonumber \\[4pt] & =&\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y} \frac{dy}{dt}+0\cdot \frac{dx}{dt}+0\cdot \frac{dy}{dt}=\frac{\partial z}{ \partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt} \end{eqnarray*}
850
The tree diagram in Figure 38 may help you to remember the form of Chain Rule I.
Let \(z=x^{2}y-y^{2}x,\) where \(x=\sin t\) and \(y=e^{t}\). Find \(\dfrac{dz}{dt}\).
Solution We begin by finding the partial derivatives of \(z\), \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\), and the derivatives \(\dfrac{dx}{dt}\) and \(\dfrac{dy}{dt}.\) \[ \dfrac{\partial z}{\partial x}=2xy-y^{2}\qquad \dfrac{ \partial z}{\partial y}=x^{2}-2xy\qquad \dfrac{dx}{dt} =\cos t\qquad \dfrac{dy}{dt}=e^{t} \]
Then we use Chain Rule I to find \(\dfrac{dz}{dt}.\) \[ \begin{eqnarray*} \frac{dz}{dt}\underset{ \underset{ \color{#0066A7}{\hbox{Chain Rule I}}} {\color{#0066A7}{\uparrow }}} {=}\frac{ \partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{ dt}=(2xy-y^{2})(\cos t)+(x^{2}-2xy)(e^{t}) \tag{1} \end{eqnarray*} \]
Since \(z\) is a function of \(t,\) we express \(\dfrac{dz}{dt}\) in terms of \(t.\) \[ \begin{eqnarray*} \frac{dz}{dt}&&=(2e^{t}\sin t-e^{2t})(\cos t)+(\sin ^{2}t-2e^{t}\sin t)(e^{t})\qquad {\color{#0066A7}{\hbox{\(x=\sin t, y=e^{t}\)}}} \nonumber\\ &&=e^{t}[ \sin ( 2t) -e^{t}\cos t+\sin ^{2}t-2e^{t}\sin t] \qquad {\color{#0066A7}{\hbox{\(2\sin t\cos t =\sin (2t) \)}}} \tag{2} \end{eqnarray*} \]
When \(\dfrac{dz}{dt}\) is expressed in terms of \(x\), \(y\), and \(t\), as in (1), we say it is expressed in mixed form. When \(\dfrac{dz}{dt}\) is expressed in terms of \(t\) alone, as in (2), we say it is in final form. When computations become involved, we will leave our answers in mixed form.
Problem 3.
Let \(z=e^{x}\sin y,\) where \(x=e^{t}\) and \(y=\dfrac{\pi }{3}e^{-t}\). Find \( \dfrac{dz}{dt}\) when \(t=0\).
Solution We begin by finding the partial derivatives of \(z\), \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\), and the derivatives \(\dfrac{dx}{dt}\) and \(\dfrac{dy}{dt}\). \[ \dfrac{\partial z}{\partial x}=e^{x}\sin y\qquad \dfrac{\partial z}{\partial y}=e^{x}\cos y\qquad \dfrac{dx}{dt}=e^{t}\qquad \dfrac{dy}{dt}=-\dfrac{\pi }{3}e^{-t} \]
Then we use Chain Rule I to find \(\dfrac{dz}{dt}\). \[ \begin{eqnarray*} \frac{dz}{dt}\underset{ \underset{ \color{#0066A7}{\hbox{Chain Rule I}}} {\color{#0066A7}{\uparrow }}} {=}\frac{ \partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{ dt}=(e^{x}\sin y)e^{t}+(e^{x}\cos y)\left( -\frac{\pi }{3}e^{-t}\right)\\[-9pt] \end{eqnarray*} \]
We can stop here and evaluate \(\dfrac{dz}{dt}.\) When \(t=0\), then \(x=e^{0}=1\) and \(y=\dfrac{\pi }{3}e^{0}=\dfrac{\pi }{3}\). So, when \(t=0\), \[ \frac{dz}{dt}=\left( e\sin \frac{\pi }{3}\right) (1)+\left( e\cos \frac{\pi }{3}\right) \left( -\frac{\pi }{3}\right) =\frac{e\sqrt{3}}{2}-\frac{\pi e}{6 }=\frac{e}{6}(3\sqrt{3}-\pi ) \]
Problem 9.
851
Chain Rule I can be extended to functions of three or more variables, where each of these variables is a function of a single variable \(t.\) If \( z=f( x_{1},x_{2},\ldots,x_{n})\) is differentiable and each variable \(x_{i}=x_{i}( t) ,\) \(i=1,2,\ldots,n,\) is a differentiable function of \(t,\) then \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x_{1}} \dfrac{dx_{1}}{dt}+\dfrac{\partial z}{\partial x_{2}}\dfrac{dx_{2}}{dt}+ \cdots+\dfrac{\partial z}{\partial x_{n}}\dfrac{dx_{n}}{dt} }}} \]
where each of the partial derivatives \(\dfrac{\partial z}{\partial x_{1}}, \ldots,\dfrac{\partial z}{\partial x_{n}}\) is expressed in terms of \(t.\)
If \(w=x^{2}y+y^{2}z,\) where \(x=t\), \(y=t^{2}\), and \(z=t^{3}\), then \(w\) is a function of \(t,\) and \begin{eqnarray*} \dfrac{dw}{dt}& =&\dfrac{\partial w}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial w}{ \partial y}\dfrac{dy}{dt}+\dfrac{\partial w}{\partial z}\dfrac{dz}{dt}=\, \underset{\color{#0066A7}{\dfrac{\partial w}{\partial x}}}{\underbrace{(2xy)}}\underset{\color{#0066A7}{\dfrac{ dx}{dt}}}{\underbrace{(1)}}+\underset{\color{#0066A7}{\dfrac{\partial w}{\partial y}}}{ \underbrace{(x^{2}+2yz)}}\underset{\color{#0066A7}{\dfrac{dy}{dt}}}{\underbrace{(2t)}}+ \underset{\color{#0066A7}{\dfrac{\partial w}{\partial z}}}{\underbrace{(y^{2})}}\underset{\color{#0066A7}{ \dfrac{dz}{dt}}}{\underbrace{(3t^{2})}} \nonumber \\ &=& 2t^{3}+(t^{2}+2t^{5})(2t)+(t^{4})(3t^{2})=7t^{6}+4t^{3} \nonumber \end{eqnarray*}
Problem 17.
A second version of the Chain Rule is used for differentiating \(z=f(x,y),\) where \(x\) and \(y\) are each functions of two independent variables \(u\) and \( v\). For example, if \(x=g(u,v)\) and \(y=h(u,v)\), then the composite function \( z=f(x,y)=f( g(u,v),h(u,v))\) is a function of the two variables \( u\) and \(v\). We seek the partial derivatives \(\dfrac{\partial z}{\partial u}\) and \(\dfrac{\partial z}{\partial v}\).
Let \(z=f( g(u,v),h(u,v))\) be the composite of \(z=f(x,y),\) where \(x=g(u,v)\) and \(y=h(u,v)\). If \(g\) and \(h\) are each continuous and have continuous first-order partial derivatives at a point \((u,v)\) in the interior of the domains of both \(g\) and \(h\), and if \(f\) is differentiable in some disk centered at the point \((x,y)=( g(u,v),h(u,v))\), then \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{\partial z}{\partial u}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial u} \qquad \hbox{and} \qquad \dfrac{\partial z}{ \partial v}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial v}+ \dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial v} }}} \]
To find \(\dfrac{\partial z}{\partial u}\), we hold \(v\) fixed. Then \(x=g(u,v)\) and \(y=h(u,v)\) are functions of \(u\) alone, and we can use Chain Rule I. Then \(\dfrac{\partial z}{\partial u}=\dfrac{\partial z}{ \partial x}\dfrac{dx}{du}+\dfrac{\partial z}{\partial y}\dfrac{dy}{du}.\) Now replace \(\dfrac{dx}{du}\) with \(\dfrac{\partial x}{\partial u}\), and replace \( \dfrac{dy}{du}\) with \(\dfrac{\partial y}{\partial u}\).
A similar argument is used for finding \(\dfrac{\partial z}{\partial v}\).
The tree diagrams in Figures 39 and 40 on page 852 may help you remember the form of Chain Rule II.
852
Find \(\dfrac{\partial z}{\partial u}\) and \(\dfrac{\partial z}{\partial v}\) if \(z=f(x,y) =x^{2}+xy-y^{2}\) and \(x=e^{2u+v}\) and \(y=\ln \dfrac{ v}{u}.\)
Solution The function \(z=f(x,y)\) is a composite function of two independent variables \(u\) and \(v.\) So, we use Chain Rule II. \[ \dfrac{\partial z}{\partial u}=\frac{\partial z}{\partial x}\frac{\partial x}{ \partial u}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \]
Since \[ \dfrac{\partial z}{\partial x}=2x+y\qquad \dfrac{ \partial z}{\partial y}=x-2y\qquad \dfrac{\partial x }{\partial u}=2e^{2u+v}\qquad \dfrac{\partial y}{\partial u} =\dfrac{\partial }{\partial u}( \ln v-\ln u) =-\dfrac{1}{u} \]
we have \begin{eqnarray*} \frac{\partial z}{\partial u}&=&\underset{\color{#0066A7}{\dfrac{\partial z}{\partial x}}}{ \underbrace{(2x+y)}}\underset{\color{#0066A7}{\dfrac{\partial x}{\partial u}}}{\underbrace{ (2e^{2u+v})}}+\underset{\color{#0066A7}{\dfrac{\partial z}{\partial y}}}{\underbrace{(x-2y)}}\underset{\color{#0066A7}{\dfrac{\partial y}{\partial u}}} {\underbrace{\left( -\dfrac{1}{u}\right) }}\\[4pt] &=&\left(2e^{2u+v}+\ln \dfrac{v}{u}\right) ( 2e^{2u+v}) -\left(e^{2u+v}-2\ln \dfrac{v}{u}\right) \left( \dfrac{1}{u}\right) \qquad \color{#0066A7}{{\hbox{\(x=e^{2u+v}; y=\ln \dfrac{v}{u}\)}}} \end{eqnarray*}
Similarly, since \(\dfrac{\partial x}{\partial v}=e^{2u+v}\) and \(\dfrac{ \partial y}{\partial v}=\dfrac{1}{v},\) we have \begin{eqnarray*} \dfrac{\partial z}{\partial v}&=&\underset{\color{#0066A7}{\dfrac{\partial z}{\partial x}}}{ \underbrace{(2x+y)}}\underset{\color{#0066A7}{\dfrac{\partial x}{\partial v}}}{\underbrace{ (e^{2u+v})}}+\underset{\color{#0066A7}{\dfrac{\partial z}{\partial y}}}{\underbrace{(x-2y)}} \underset{\color{#0066A7}{\dfrac{\partial y}{\partial v}}}{\underbrace{\left( \dfrac{1}{v} \right) }}\\[4pt] &=&\left( 2e^{2u+v}+\ln \dfrac{v}{u}\right) ( e^{2u+v}) +\left( e^{2u+v}-2~\ln \dfrac{v}{u}\right) \left( \dfrac{1}{v}\right) \qquad \color{#0066A7}{{\hbox{\(x=e^{2u+v}; y=\ln \dfrac{v}{u}\)}}}\qquad \end{eqnarray*}
Notice that since \(z\) is a function of \(u\) and \(v,\) the final form of \(\dfrac{ \partial z}{\partial u}\) and \(\dfrac{\partial z}{\partial v}\) is expressed in terms of only \(u\) and \(v.\)
Problem 31.
The form of Chain Rule II stays the same if \(z\) is a function of \(m\geq 3\) variables. That is, if \(z=f(x_{1}, x_{2}, \ldots , x_{m})\) is a differentiable function, and if each of the variables \( x_{1}=g_{1}(u_{1},u_{2}, \ldots , u_{n})\), \(x_{2}=g_{2}(u_{1},u_{2}, \ldots , u_{n}), \ldots , x_{m}=g_{m}(u_{1}, u_{2}, \ldots , u_{n})\) has continuous first-order partial derivatives, then the composite function \( z=f(g_{1} (u_1,\ldots,u_n), g_{2}(u_1,\ldots,u_n), \ldots , g_{m}(u_1,\ldots,u_n))\) is a function of \(u_{1}, u_{2}, \ldots , u_{n}\), and the partial derivatives are found using an extension of Chain Rule II. \begin{eqnarray*} \dfrac{\partial z}{\partial u_{1}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{1}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{1}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{1}} \\[4pt] \dfrac{\partial z}{\partial u_{2}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{2}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{2}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{2}} \\[4pt] &&\vdots \\[4pt] \dfrac{\partial z}{\partial u_{n}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{n}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{n}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{n}} \end{eqnarray*}
853
These partial derivatives can be written more compactly as \[ \frac{\partial z}{\partial u_{i}}=\sum_{j=1}^{m}\frac{\partial z}{\partial x_{j}}\frac{\partial x_{j}}{\partial u_{i}}\qquad i=1, 2, \ldots , n \]
Find \(\dfrac{\partial f}{\partial u},\) \(\dfrac{\partial f}{\partial v},\) \(\dfrac{\partial f}{\partial w},\) \(\dfrac{\partial f}{\partial t}\) for the function \(f(x,y,z)=x^{2}+y^{2}+z^{2},\) where \(x=uvwt\), \(y=e^{u+v+w+t}\), and \(z=u+2v+3w+4t\).
Solution We use an extension of Chain Rule II. \[ \begin{array}{lllllll} \dfrac{\partial f}{\partial u} &=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial u}+ \dfrac{\partial f}{\partial z}\dfrac{\partial z}{\partial u} & \dfrac{ \partial f}{\partial v}&=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{ \partial v}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial v}+\dfrac{ \partial f}{\partial z}\dfrac{\partial z}{\partial v} \nonumber\\ &=&(2x)(vwt)+(2y)(e^{u+v+w+t})+(2z)(1) & &=&(2x)(uwt)+(2y)(e^{u+v+w+t})+(2z)(2) \nonumber \\ &=&2uv^{2}w^{2}t^{2}+2e^{2(u+v+w+t)}+2(u+2v+3w+4t) & &=&2u^{2}vw^{2}t^{2}+2e^{2(u+v+w+t)}+4(u+2v+3w+4t) \nonumber \\[1pc] \dfrac{\partial f}{\partial w} &=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial w}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial w}+ \dfrac{\partial f}{\partial z}\dfrac{\partial z}{\partial w} & \dfrac{\partial f}{ \partial t}&=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial t}+\dfrac{ \partial f}{\partial y}\dfrac{\partial y}{\partial t}+\dfrac{\partial f}{ \partial z}\dfrac{\partial z}{\partial t} \nonumber \\ &=&(2x)(uvt)+(2y)(e^{u+v+w+t})+(2z)(3) & &=&(2x)(uvw)+(2y)(e^{u+v+w+t})+(2z)(4) \nonumber \\ &=&2u^{2}v^{2}wt^{2}+2e^{2(u+v+w+t)}+6(u+2v+3w+4t) & &=&2u^{2}v^{2}w^{2}t+2e^{2(u+v+w+t)}+8(u+2v+3w+4t) \end{array} \]
Again, notice that the partial derivatives of \(f\) in Example 5 are expressed in terms of \(u, v, w\), and \(t\) alone.
Problem 37.
Implicit differentiation is discussed in Section 3.2, pp. 209-213.
If a differentiable function \(y=f(x)\) of one variable is defined implicitly by the equation \(F(x,y)=0\), then \(F( x,f(x) ) =0.\) We can find the derivative \(\dfrac{dy}{dx}\) as follows. Let \[ z=F(u,y)\qquad \hbox{where}\quad u=x \quad \hbox{and} \quad y=f(x) \]
Since \(u\) and \(y\) are functions of one independent variable \(x,\) we use Chain Rule I to find \(\dfrac{dz}{dx}.\) \[ \frac{dz}{dx}=\frac{\partial F}{\partial u}\cdot \frac{du}{dx}+\frac{ \partial F}{\partial y}\cdot \frac{dy}{dx} \]
854
Since the composite function \(z=F(u,y)=F(x,f(x))\equiv 0\), the derivative \(\dfrac{ dz}{dx}=0.\) Also because \(u=x\), \(\dfrac{\partial F}{\partial u}=\dfrac{ \partial F}{\partial x}\) and \(\dfrac{du}{dx}=1\). So, \begin{equation*} 0=\frac{\partial F}{\partial x}(1)+\frac{\partial F}{\partial y}\cdot \frac{ dy}{dx} \end{equation*}
Now if \(\dfrac{\partial F}{\partial y}\neq 0\), we can solve for \(\dfrac{dy}{ dx}.\) \[ \dfrac{dy}{dx}=-\dfrac{\dfrac{\partial F}{ \partial x}}{\dfrac{\partial F}{\partial y}}=-\dfrac{F_{x}}{F_{y}}\qquad \dfrac{\partial F}{\partial y}\neq 0 \]
Suppose \(F\) is a differentiable function and \(y=f(x)\) is a function defined implicitly by the equation \(F(x,y)=0\). Then \[ \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dy}{dx}=-\dfrac{F_{x}(x,y)}{F_{y}(x,y)} }}} \tag{3} \end{equation*}\]
provided \(\dfrac{\partial F}{\partial y}=F_{y}(x,y)\neq 0.\)
Find \(\dfrac{dy}{dx}\) if \(y=f(x)\) is defined implicitly by \( F(x,y)=e^{y}\cos x-x-1=0\).
Solution First we find the partial derivatives of \(F\). \[ F_{x}=\dfrac{\partial F}{\partial x}=-e^{y}\sin x-1\qquad \hbox{and} \qquad F_{y}=\dfrac{ \partial F}{\partial y}=e^{y}\cos x \]
Then we use (3). If \(e^{y}\cos x\neq 0\), \[ \frac{dy}{dx}=-\frac{F_{x}}{F_{y}}=-\frac{-e^{y}\sin x-1}{e^{y}\cos x}=\frac{e^{y}\sin x+1}{e^{y}\cos x} \]
Problem 41.
If a differentiable function \(z=f(x,y)\) of two variables is defined implicitly by the equation \(F(x,y,z)=0\), we can find the partial derivatives \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) by using Chain Rule II.
We begin by letting \(w=F(u,v,z),\) where \(u=x\), \(v=y\), and \(z=f(x,y)\). Since the composite function \(w=F( x,y,f(x, y)) \equiv 0\), it follows that \(\dfrac{\partial w}{\partial x}=0\) and \(\dfrac{\partial w}{ \partial y}=0\). To find an expression for \(\dfrac{\partial w}{\partial x},\) we use Chain Rule II. \begin{equation*} \frac{\partial w}{\partial x}=\frac{\partial F}{\partial u}\cdot \frac{ \partial u}{\partial x}+\frac{\partial F}{\partial v}\cdot \frac{\partial v}{ \partial x}+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} =0 \end{equation*}
Since \(u=x,\) then \(\dfrac{\partial F}{\partial u}=\dfrac{\partial F}{ \partial x}\) and \(\dfrac{\partial u}{\partial x}=1,\) and since \(v=y,\) then \( \dfrac{\partial F}{\partial v}=\dfrac{\partial F}{\partial y}\) and \(\dfrac{ \partial v}{\partial x}=0\). So, \begin{eqnarray*} \frac{\partial F}{\partial x}\cdot 1 +\frac{\partial F}{\partial y}\cdot 0+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} &=&0 \\[4pt] \frac{\partial F}{\partial x}+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} &=&0 \end{eqnarray*}
855
If \(\dfrac{\partial F}{\partial z}\neq 0\), it follows that \begin{equation*} \frac{\partial z}{\partial x}=-\frac{\dfrac{\partial F}{\partial x}}{\dfrac{ \partial F}{\partial z}}=-\frac{F_{x}(x,y,z)}{F_{z}(x,y,z)} \end{equation*}
In a similar way, it can be shown that \[ \frac{\partial z}{\partial y}=-\frac{F_{y}(x,y,z)}{F_{z}(x,y,z)} \]
If a differentiable function \(z=f(x,y)\) is defined implicitly by the equation \(F(x,y,z)=0\), then \[ \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{\partial z}{\partial x}=-\dfrac{F_{x}(x,y,z)}{ F_{z}(x,y,z)}\qquad \hbox{and} \qquad \dfrac{\partial z}{\partial y}=-\dfrac{F_{y}(x,y,z)}{ F_{z}(x,y,z)} }}} \tag{4} \end{equation*} \]
provided \(\dfrac{\partial F}{\partial z}=F_{z}(x,y,z)\neq 0.\)
Find \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) if \(z=f(x,y) \) is defined implicitly by the function \[ F(x,y,z)=x^{2}z^{2}+y^{2}-z^{2}+6yz-10=0. \]
Solution First we find the partial derivatives of \(F.\) \begin{equation*} F_{x}=\dfrac{\partial F}{\partial x}=2xz^{2}\qquad F_{y}=\dfrac{ \partial F}{\partial y}=2y+6z\qquad F_{z}=\dfrac{\partial F}{\partial z} =2x^{2}z-2z+6y \end{equation*}
Then we use (4). If \(F_{z}=2x^{2}z-2z+6y\neq 0\), \[ \dfrac{\partial z}{\partial x}=-\dfrac{2xz^{2}}{2x^{2}z-2z+6y}=-\dfrac{ xz^{2}}{x^{2}z-z+3y} \]
and \[ \dfrac{\partial z}{\partial y}=-\dfrac{2y+6z}{ 2x^{2}z-2z+6y}=-\dfrac{y+3z}{x^{2}z-z+3y} \]
Problem 49.
The Chain Rules are often used in proofs involving functions of two or more variables.
Let \(p=f(v-w, v-u, u-w)\) be a differentiable function. Show that \[ \frac{\partial p}{\partial u}+\frac{\partial p}{\partial v}+\frac{\partial p}{\partial w}=0 \]
Solution Let \(x=v-w\), \(y=v-u\), and \(z=u-w\). Then \(p=f(x,y,z)\). We use an extension of Chain Rule II. Since \(\dfrac{\partial x}{\partial u}=0,\) \(\dfrac{\partial y}{\partial u} =-1,\) and \(\dfrac{\partial z}{\partial u}=1,\) we have \[ \frac{\partial p}{\partial u}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial u}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial u}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial u}=\frac{\partial p}{ \partial x}(0)+\frac{\partial p}{\partial y}(-1)+\frac{\partial p}{\partial z }(1)=-\frac{\partial p}{\partial y}+\frac{\partial p}{\partial z}\hbox{ } \]
856
Since \(\dfrac{\partial x}{\partial v}=1,\) \(\dfrac{\partial y}{\partial v}=1,\) and \(\dfrac{\partial z}{\partial v}=0,\) we have \[ \frac{\partial p}{\partial v}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial v}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial v}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial v}=\frac{\partial p}{ \partial x}(1)+\frac{\partial p}{\partial y}(1)+\frac{\partial p}{\partial z} (0)=\frac{\partial p}{\partial x}+\frac{\partial p}{\partial y} \]
Since \(\dfrac{\partial x}{\partial w}=-1,\) \(\dfrac{\partial y}{\partial w} =0,\) and \(\dfrac{\partial z}{\partial w}=-1,\) we have \[ \frac{\partial p}{\partial w}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial w}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial w}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial w}=\frac{\partial p}{ \partial x}(-1)+\frac{\partial p}{\partial y}(0)+\frac{\partial p}{\partial z }(-1)=-\frac{\partial p}{\partial x}-\frac{\partial p}{\partial z} \]
Adding these, we get \[ \underset{\color{#0066A7}{\hbox{ }\hspace{5pc}\dfrac{{\partial p}}{{\partial u}}}}{\dfrac{ \partial p}{\partial u}+\dfrac{\partial p}{\partial v}+\dfrac{\partial p}{ \partial w}=\underbrace{\left( -\frac{\partial p}{\partial y}+\frac{\partial p}{\partial z}\right) }}+\underset{\color{#0066A7}{\dfrac{{\partial p}}{{ \partial v}}}}{\underbrace{\left( \frac{\partial p}{\partial x}+\frac{ \partial p}{\partial y}\right) }}+\underset{\color{#0066A7}{\dfrac{{\partial p}}{ {\partial w}}}}{\underbrace{\left( -\frac{\partial p}{\partial x}- \frac{\partial p}{\partial z}\right) \,\,\,}}=0 \]
Problem 65.