12.5 Chain Rules

849

OBJECTIVES

When you finish this section, you should be able to:

  1. Differentiate functions of two or more variables where each variable is a function of a single variable (p. 849)
  2. Differentiate functions of two or more variables where each variable is a function of two or more variables (p. 851)
  3. Differentiate an implicitly-defined function of two or more variables (p. 853)
  4. Use a Chain Rule in a proof (p. 855)

1 Differentiate Functions of Two or More Variables Where Each Variable Is a Function of a Single Variable

NEED TO REVIEW?

The Chain Rule is discussed in Section 3.1, pp. 198-205.

Recall that the Chain Rule is used to find the derivative of a composite function. For functions of two or more variables, there are several versions of the Chain Rule. The first Chain Rule is used when the independent variables are each a function of a single variable \(t.\) For example, for the function \(z=f(x,y)\) of two variables, if \(x=x(t)\) and \(y=y(t)\), then the composite function \(z=f( x(t), y(t))\) is a function of a single independent variable \(t\).

THEOREM Chain Rule I: One Independent Variable

If \(x=x(t)\) and \(y=y(t)\) are differentiable functions of \(t\), and if \( z=f(x,y)\) is a differentiable function of \(x\) and \(y\), then \(z=f(x(t),y(t))\) is a differentiable function of \(t\). Moreover, \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial z}{\partial y}\dfrac{dy}{dt} }}}\]

Proof

Since \(\dfrac{dz}{dt}=\lim\limits_{\Delta t\rightarrow 0} \dfrac{\Delta z}{\Delta t}\), we seek an expression for \(\Delta z\). Since \( z=f(x,y)\) is differentiable, the change \(\Delta z\) is \begin{equation*} \Delta z=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y} \Delta y+\eta _{1}\Delta x+\eta _{2}\Delta y \end{equation*}

where \(\eta _{1}\) and \(\eta _{2}\) are functions of \(\Delta x\) and \(\Delta y\) and \(\lim\limits_{(\Delta x, \Delta y)\rightarrow (0, 0)}\eta _{1}=0\) and \( \lim\limits_{(\Delta x, \Delta y)\rightarrow (0, 0)} \eta _{2}=0\). Next we divide both sides by \(\Delta t.\) \begin{equation*} \dfrac{\Delta z}{\Delta t}=\frac{\partial z}{\partial x}\dfrac{\Delta x}{ \Delta t}+\frac{\partial z}{\partial y}\dfrac{\Delta y}{\Delta t}+\eta _{1} \dfrac{\Delta x}{\Delta t}+\eta _{2}\dfrac{\Delta y}{\Delta t} \end{equation*}

Then \[ \frac{dz}{dt}=\lim_{\Delta t\rightarrow 0}\frac{\Delta z}{\Delta t} =\lim_{\Delta t\rightarrow 0}\;\left[ \frac{\partial z}{\partial x}\frac{ \Delta x}{\Delta t}+\frac{\partial z}{\partial y}\frac{\Delta y}{\Delta t} +\eta _{1}\frac{\Delta x}{\Delta t}+\eta _{2}\frac{\Delta y}{\Delta t}\right] \]

In the right-hand expression, \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{ \partial z}{\partial y}\) are evaluated at \((x(t),y(t))\) and do not depend on \(\Delta t\). Also, since \(x=x( t)\) and \(y=y( t)\) are differentiable, \begin{equation*} \lim\limits_{\Delta t\rightarrow 0}\dfrac{\Delta x}{\Delta t}=\frac{dx}{dt} \qquad \hbox{and}\qquad \lim_{\Delta t\rightarrow 0}\dfrac{\Delta y}{\Delta t }=\dfrac{dy}{dt} \end{equation*}

Furthermore, as \(\Delta t\rightarrow 0\), then \((\Delta x,\Delta y)\rightarrow (0,0)\), so that \(\eta _{1}\rightarrow 0\) and \(\eta _{2}\rightarrow 0\). Putting this all together, we get \begin{eqnarray*} \frac{dz}{dt}& =&\frac{\partial z}{\partial x}\lim_{\Delta t\rightarrow 0} \frac{\Delta x}{\Delta t}+\frac{\partial z}{\partial y}\lim_{\Delta t\rightarrow 0}\frac{\Delta y}{\Delta t}+\lim_{\Delta t\rightarrow 0}\eta _{1}\cdot \lim_{\Delta t\rightarrow 0}\frac{\Delta x}{\Delta t}+\lim_{\Delta t\rightarrow 0}\eta _{2}\cdot \lim_{\Delta t\rightarrow 0}\frac{\Delta y}{ \Delta t} \nonumber \\[4pt] & =&\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y} \frac{dy}{dt}+0\cdot \frac{dx}{dt}+0\cdot \frac{dy}{dt}=\frac{\partial z}{ \partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt} \end{eqnarray*}

850

The tree diagram in Figure 38 may help you to remember the form of Chain Rule I.

Figure 38 \(\dfrac{dz}{dt} =\dfrac{\partial z}{\partial x} \dfrac{dx}{dt} + \dfrac{\partial z}{\partial y} \dfrac{dy}{dt} \)

Differentiating a Function of Two Variables Where Each Variable Is a Function of \(t\)

Let \(z=x^{2}y-y^{2}x,\) where \(x=\sin t\) and \(y=e^{t}\). Find \(\dfrac{dz}{dt}\).

Solution We begin by finding the partial derivatives of \(z\), \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\), and the derivatives \(\dfrac{dx}{dt}\) and \(\dfrac{dy}{dt}.\) \[ \dfrac{\partial z}{\partial x}=2xy-y^{2}\qquad \dfrac{ \partial z}{\partial y}=x^{2}-2xy\qquad \dfrac{dx}{dt} =\cos t\qquad \dfrac{dy}{dt}=e^{t} \]

Then we use Chain Rule I to find \(\dfrac{dz}{dt}.\) \[ \begin{eqnarray*} \frac{dz}{dt}\underset{ \underset{ \color{#0066A7}{\hbox{Chain Rule I}}} {\color{#0066A7}{\uparrow }}} {=}\frac{ \partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{ dt}=(2xy-y^{2})(\cos t)+(x^{2}-2xy)(e^{t}) \tag{1} \end{eqnarray*} \]

Since \(z\) is a function of \(t,\) we express \(\dfrac{dz}{dt}\) in terms of \(t.\) \[ \begin{eqnarray*} \frac{dz}{dt}&&=(2e^{t}\sin t-e^{2t})(\cos t)+(\sin ^{2}t-2e^{t}\sin t)(e^{t})\qquad {\color{#0066A7}{\hbox{\(x=\sin t, y=e^{t}\)}}} \nonumber\\ &&=e^{t}[ \sin ( 2t) -e^{t}\cos t+\sin ^{2}t-2e^{t}\sin t] \qquad {\color{#0066A7}{\hbox{\(2\sin t\cos t =\sin (2t) \)}}} \tag{2} \end{eqnarray*} \]

When \(\dfrac{dz}{dt}\) is expressed in terms of \(x\), \(y\), and \(t\), as in (1), we say it is expressed in mixed form. When \(\dfrac{dz}{dt}\) is expressed in terms of \(t\) alone, as in (2), we say it is in final form. When computations become involved, we will leave our answers in mixed form.

NOW WORK

Problem 3.

Differentiating a Function of Two Variables Where Each Variable Is a Function of \(t\)

Let \(z=e^{x}\sin y,\) where \(x=e^{t}\) and \(y=\dfrac{\pi }{3}e^{-t}\). Find \( \dfrac{dz}{dt}\) when \(t=0\).

Solution We begin by finding the partial derivatives of \(z\), \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\), and the derivatives \(\dfrac{dx}{dt}\) and \(\dfrac{dy}{dt}\). \[ \dfrac{\partial z}{\partial x}=e^{x}\sin y\qquad \dfrac{\partial z}{\partial y}=e^{x}\cos y\qquad \dfrac{dx}{dt}=e^{t}\qquad \dfrac{dy}{dt}=-\dfrac{\pi }{3}e^{-t} \]

Then we use Chain Rule I to find \(\dfrac{dz}{dt}\). \[ \begin{eqnarray*} \frac{dz}{dt}\underset{ \underset{ \color{#0066A7}{\hbox{Chain Rule I}}} {\color{#0066A7}{\uparrow }}} {=}\frac{ \partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{ dt}=(e^{x}\sin y)e^{t}+(e^{x}\cos y)\left( -\frac{\pi }{3}e^{-t}\right)\\[-9pt] \end{eqnarray*} \]

We can stop here and evaluate \(\dfrac{dz}{dt}.\) When \(t=0\), then \(x=e^{0}=1\) and \(y=\dfrac{\pi }{3}e^{0}=\dfrac{\pi }{3}\). So, when \(t=0\), \[ \frac{dz}{dt}=\left( e\sin \frac{\pi }{3}\right) (1)+\left( e\cos \frac{\pi }{3}\right) \left( -\frac{\pi }{3}\right) =\frac{e\sqrt{3}}{2}-\frac{\pi e}{6 }=\frac{e}{6}(3\sqrt{3}-\pi ) \]

NOW WORK

Problem 9.

851

Chain Rule I can be extended to functions of three or more variables, where each of these variables is a function of a single variable \(t.\) If \( z=f( x_{1},x_{2},\ldots,x_{n})\) is differentiable and each variable \(x_{i}=x_{i}( t) ,\) \(i=1,2,\ldots,n,\) is a differentiable function of \(t,\) then \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x_{1}} \dfrac{dx_{1}}{dt}+\dfrac{\partial z}{\partial x_{2}}\dfrac{dx_{2}}{dt}+ \cdots+\dfrac{\partial z}{\partial x_{n}}\dfrac{dx_{n}}{dt} }}} \]

where each of the partial derivatives \(\dfrac{\partial z}{\partial x_{1}}, \ldots,\dfrac{\partial z}{\partial x_{n}}\) is expressed in terms of \(t.\)

Differentiating a Function of Three Variables Where Each Variable Is a Function of \(t\)

If \(w=x^{2}y+y^{2}z,\) where \(x=t\), \(y=t^{2}\), and \(z=t^{3}\), then \(w\) is a function of \(t,\) and \begin{eqnarray*} \dfrac{dw}{dt}& =&\dfrac{\partial w}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial w}{ \partial y}\dfrac{dy}{dt}+\dfrac{\partial w}{\partial z}\dfrac{dz}{dt}=\, \underset{\color{#0066A7}{\dfrac{\partial w}{\partial x}}}{\underbrace{(2xy)}}\underset{\color{#0066A7}{\dfrac{ dx}{dt}}}{\underbrace{(1)}}+\underset{\color{#0066A7}{\dfrac{\partial w}{\partial y}}}{ \underbrace{(x^{2}+2yz)}}\underset{\color{#0066A7}{\dfrac{dy}{dt}}}{\underbrace{(2t)}}+ \underset{\color{#0066A7}{\dfrac{\partial w}{\partial z}}}{\underbrace{(y^{2})}}\underset{\color{#0066A7}{ \dfrac{dz}{dt}}}{\underbrace{(3t^{2})}} \nonumber \\ &=& 2t^{3}+(t^{2}+2t^{5})(2t)+(t^{4})(3t^{2})=7t^{6}+4t^{3} \nonumber \end{eqnarray*}

NOW WORK

Problem 17.

2 Differentiate Functions of Two or More Variables Where Each Variable is a Function of Two or More Variables

A second version of the Chain Rule is used for differentiating \(z=f(x,y),\) where \(x\) and \(y\) are each functions of two independent variables \(u\) and \( v\). For example, if \(x=g(u,v)\) and \(y=h(u,v)\), then the composite function \( z=f(x,y)=f( g(u,v),h(u,v))\) is a function of the two variables \( u\) and \(v\). We seek the partial derivatives \(\dfrac{\partial z}{\partial u}\) and \(\dfrac{\partial z}{\partial v}\).

THEOREM Chain Rule II: Two Independent Variables

Let \(z=f( g(u,v),h(u,v))\) be the composite of \(z=f(x,y),\) where \(x=g(u,v)\) and \(y=h(u,v)\). If \(g\) and \(h\) are each continuous and have continuous first-order partial derivatives at a point \((u,v)\) in the interior of the domains of both \(g\) and \(h\), and if \(f\) is differentiable in some disk centered at the point \((x,y)=( g(u,v),h(u,v))\), then \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{\partial z}{\partial u}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial u} \qquad \hbox{and} \qquad \dfrac{\partial z}{ \partial v}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial v}+ \dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial v} }}} \]

Proof

To find \(\dfrac{\partial z}{\partial u}\), we hold \(v\) fixed. Then \(x=g(u,v)\) and \(y=h(u,v)\) are functions of \(u\) alone, and we can use Chain Rule I. Then \(\dfrac{\partial z}{\partial u}=\dfrac{\partial z}{ \partial x}\dfrac{dx}{du}+\dfrac{\partial z}{\partial y}\dfrac{dy}{du}.\) Now replace \(\dfrac{dx}{du}\) with \(\dfrac{\partial x}{\partial u}\), and replace \( \dfrac{dy}{du}\) with \(\dfrac{\partial y}{\partial u}\).

A similar argument is used for finding \(\dfrac{\partial z}{\partial v}\).

The tree diagrams in Figures 39 and 40 on page 852 may help you remember the form of Chain Rule II.

852

Figure 39 \(\dfrac{\partial z}{\partial u} =\dfrac{\partial z}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial u}\)
Figure 40 \(\dfrac{\partial z}{\partial v} =\dfrac{\partial z}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial v} \)

Differentiating a Function of Two Variables Where Each Variable Is a Function of Two Variables

Find \(\dfrac{\partial z}{\partial u}\) and \(\dfrac{\partial z}{\partial v}\) if \(z=f(x,y) =x^{2}+xy-y^{2}\) and \(x=e^{2u+v}\) and \(y=\ln \dfrac{ v}{u}.\)

Solution The function \(z=f(x,y)\) is a composite function of two independent variables \(u\) and \(v.\) So, we use Chain Rule II. \[ \dfrac{\partial z}{\partial u}=\frac{\partial z}{\partial x}\frac{\partial x}{ \partial u}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \]

Since \[ \dfrac{\partial z}{\partial x}=2x+y\qquad \dfrac{ \partial z}{\partial y}=x-2y\qquad \dfrac{\partial x }{\partial u}=2e^{2u+v}\qquad \dfrac{\partial y}{\partial u} =\dfrac{\partial }{\partial u}( \ln v-\ln u) =-\dfrac{1}{u} \]

we have \begin{eqnarray*} \frac{\partial z}{\partial u}&=&\underset{\color{#0066A7}{\dfrac{\partial z}{\partial x}}}{ \underbrace{(2x+y)}}\underset{\color{#0066A7}{\dfrac{\partial x}{\partial u}}}{\underbrace{ (2e^{2u+v})}}+\underset{\color{#0066A7}{\dfrac{\partial z}{\partial y}}}{\underbrace{(x-2y)}}\underset{\color{#0066A7}{\dfrac{\partial y}{\partial u}}} {\underbrace{\left( -\dfrac{1}{u}\right) }}\\[4pt] &=&\left(2e^{2u+v}+\ln \dfrac{v}{u}\right) ( 2e^{2u+v}) -\left(e^{2u+v}-2\ln \dfrac{v}{u}\right) \left( \dfrac{1}{u}\right) \qquad \color{#0066A7}{{\hbox{\(x=e^{2u+v}; y=\ln \dfrac{v}{u}\)}}} \end{eqnarray*}

Similarly, since \(\dfrac{\partial x}{\partial v}=e^{2u+v}\) and \(\dfrac{ \partial y}{\partial v}=\dfrac{1}{v},\) we have \begin{eqnarray*} \dfrac{\partial z}{\partial v}&=&\underset{\color{#0066A7}{\dfrac{\partial z}{\partial x}}}{ \underbrace{(2x+y)}}\underset{\color{#0066A7}{\dfrac{\partial x}{\partial v}}}{\underbrace{ (e^{2u+v})}}+\underset{\color{#0066A7}{\dfrac{\partial z}{\partial y}}}{\underbrace{(x-2y)}} \underset{\color{#0066A7}{\dfrac{\partial y}{\partial v}}}{\underbrace{\left( \dfrac{1}{v} \right) }}\\[4pt] &=&\left( 2e^{2u+v}+\ln \dfrac{v}{u}\right) ( e^{2u+v}) +\left( e^{2u+v}-2~\ln \dfrac{v}{u}\right) \left( \dfrac{1}{v}\right) \qquad \color{#0066A7}{{\hbox{\(x=e^{2u+v}; y=\ln \dfrac{v}{u}\)}}}\qquad \end{eqnarray*}

Notice that since \(z\) is a function of \(u\) and \(v,\) the final form of \(\dfrac{ \partial z}{\partial u}\) and \(\dfrac{\partial z}{\partial v}\) is expressed in terms of only \(u\) and \(v.\)

NOW WORK

Problem 31.

The form of Chain Rule II stays the same if \(z\) is a function of \(m\geq 3\) variables. That is, if \(z=f(x_{1}, x_{2}, \ldots , x_{m})\) is a differentiable function, and if each of the variables \( x_{1}=g_{1}(u_{1},u_{2}, \ldots , u_{n})\), \(x_{2}=g_{2}(u_{1},u_{2}, \ldots , u_{n}), \ldots , x_{m}=g_{m}(u_{1}, u_{2}, \ldots , u_{n})\) has continuous first-order partial derivatives, then the composite function \( z=f(g_{1} (u_1,\ldots,u_n), g_{2}(u_1,\ldots,u_n), \ldots , g_{m}(u_1,\ldots,u_n))\) is a function of \(u_{1}, u_{2}, \ldots , u_{n}\), and the partial derivatives are found using an extension of Chain Rule II. \begin{eqnarray*} \dfrac{\partial z}{\partial u_{1}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{1}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{1}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{1}} \\[4pt] \dfrac{\partial z}{\partial u_{2}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{2}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{2}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{2}} \\[4pt] &&\vdots \\[4pt] \dfrac{\partial z}{\partial u_{n}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{n}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{n}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{n}} \end{eqnarray*}

853

These partial derivatives can be written more compactly as \[ \frac{\partial z}{\partial u_{i}}=\sum_{j=1}^{m}\frac{\partial z}{\partial x_{j}}\frac{\partial x_{j}}{\partial u_{i}}\qquad i=1, 2, \ldots , n \]

Differentiating a Function of Three Variables Where Each Variable Is a Function of Four Variables

Find \(\dfrac{\partial f}{\partial u},\) \(\dfrac{\partial f}{\partial v},\) \(\dfrac{\partial f}{\partial w},\) \(\dfrac{\partial f}{\partial t}\) for the function \(f(x,y,z)=x^{2}+y^{2}+z^{2},\) where \(x=uvwt\), \(y=e^{u+v+w+t}\), and \(z=u+2v+3w+4t\).

Solution We use an extension of Chain Rule II. \[ \begin{array}{lllllll} \dfrac{\partial f}{\partial u} &=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial u}+ \dfrac{\partial f}{\partial z}\dfrac{\partial z}{\partial u} & \dfrac{ \partial f}{\partial v}&=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{ \partial v}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial v}+\dfrac{ \partial f}{\partial z}\dfrac{\partial z}{\partial v} \nonumber\\ &=&(2x)(vwt)+(2y)(e^{u+v+w+t})+(2z)(1) & &=&(2x)(uwt)+(2y)(e^{u+v+w+t})+(2z)(2) \nonumber \\ &=&2uv^{2}w^{2}t^{2}+2e^{2(u+v+w+t)}+2(u+2v+3w+4t) & &=&2u^{2}vw^{2}t^{2}+2e^{2(u+v+w+t)}+4(u+2v+3w+4t) \nonumber \\[1pc] \dfrac{\partial f}{\partial w} &=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial w}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial w}+ \dfrac{\partial f}{\partial z}\dfrac{\partial z}{\partial w} & \dfrac{\partial f}{ \partial t}&=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial t}+\dfrac{ \partial f}{\partial y}\dfrac{\partial y}{\partial t}+\dfrac{\partial f}{ \partial z}\dfrac{\partial z}{\partial t} \nonumber \\ &=&(2x)(uvt)+(2y)(e^{u+v+w+t})+(2z)(3) & &=&(2x)(uvw)+(2y)(e^{u+v+w+t})+(2z)(4) \nonumber \\ &=&2u^{2}v^{2}wt^{2}+2e^{2(u+v+w+t)}+6(u+2v+3w+4t) & &=&2u^{2}v^{2}w^{2}t+2e^{2(u+v+w+t)}+8(u+2v+3w+4t) \end{array} \]

Again, notice that the partial derivatives of \(f\) in Example 5 are expressed in terms of \(u, v, w\), and \(t\) alone.

NOW WORK

Problem 37.

3 Differentiate an Implicitly-Defined Function of Two or More Variables

NEED TO REVIEW?

Implicit differentiation is discussed in Section 3.2, pp. 209-213.

If a differentiable function \(y=f(x)\) of one variable is defined implicitly by the equation \(F(x,y)=0\), then \(F( x,f(x) ) =0.\) We can find the derivative \(\dfrac{dy}{dx}\) as follows. Let \[ z=F(u,y)\qquad \hbox{where}\quad u=x \quad \hbox{and} \quad y=f(x) \]

Since \(u\) and \(y\) are functions of one independent variable \(x,\) we use Chain Rule I to find \(\dfrac{dz}{dx}.\) \[ \frac{dz}{dx}=\frac{\partial F}{\partial u}\cdot \frac{du}{dx}+\frac{ \partial F}{\partial y}\cdot \frac{dy}{dx} \]

854

Since the composite function \(z=F(u,y)=F(x,f(x))\equiv 0\), the derivative \(\dfrac{ dz}{dx}=0.\) Also because \(u=x\), \(\dfrac{\partial F}{\partial u}=\dfrac{ \partial F}{\partial x}\) and \(\dfrac{du}{dx}=1\). So, \begin{equation*} 0=\frac{\partial F}{\partial x}(1)+\frac{\partial F}{\partial y}\cdot \frac{ dy}{dx} \end{equation*}

Now if \(\dfrac{\partial F}{\partial y}\neq 0\), we can solve for \(\dfrac{dy}{ dx}.\) \[ \dfrac{dy}{dx}=-\dfrac{\dfrac{\partial F}{ \partial x}}{\dfrac{\partial F}{\partial y}}=-\dfrac{F_{x}}{F_{y}}\qquad \dfrac{\partial F}{\partial y}\neq 0 \]

Implicit Differentiation Formula I

Suppose \(F\) is a differentiable function and \(y=f(x)\) is a function defined implicitly by the equation \(F(x,y)=0\). Then \[ \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dy}{dx}=-\dfrac{F_{x}(x,y)}{F_{y}(x,y)} }}} \tag{3} \end{equation*}\]

provided \(\dfrac{\partial F}{\partial y}=F_{y}(x,y)\neq 0.\)

Differentiating an Implicitly Defined Function

Find \(\dfrac{dy}{dx}\) if \(y=f(x)\) is defined implicitly by \( F(x,y)=e^{y}\cos x-x-1=0\).

Solution First we find the partial derivatives of \(F\). \[ F_{x}=\dfrac{\partial F}{\partial x}=-e^{y}\sin x-1\qquad \hbox{and} \qquad F_{y}=\dfrac{ \partial F}{\partial y}=e^{y}\cos x \]

Then we use (3). If \(e^{y}\cos x\neq 0\), \[ \frac{dy}{dx}=-\frac{F_{x}}{F_{y}}=-\frac{-e^{y}\sin x-1}{e^{y}\cos x}=\frac{e^{y}\sin x+1}{e^{y}\cos x} \]

NOW WORK

Problem 41.

If a differentiable function \(z=f(x,y)\) of two variables is defined implicitly by the equation \(F(x,y,z)=0\), we can find the partial derivatives \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) by using Chain Rule II.

We begin by letting \(w=F(u,v,z),\) where \(u=x\), \(v=y\), and \(z=f(x,y)\). Since the composite function \(w=F( x,y,f(x, y)) \equiv 0\), it follows that \(\dfrac{\partial w}{\partial x}=0\) and \(\dfrac{\partial w}{ \partial y}=0\). To find an expression for \(\dfrac{\partial w}{\partial x},\) we use Chain Rule II. \begin{equation*} \frac{\partial w}{\partial x}=\frac{\partial F}{\partial u}\cdot \frac{ \partial u}{\partial x}+\frac{\partial F}{\partial v}\cdot \frac{\partial v}{ \partial x}+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} =0 \end{equation*}

Since \(u=x,\) then \(\dfrac{\partial F}{\partial u}=\dfrac{\partial F}{ \partial x}\) and \(\dfrac{\partial u}{\partial x}=1,\) and since \(v=y,\) then \( \dfrac{\partial F}{\partial v}=\dfrac{\partial F}{\partial y}\) and \(\dfrac{ \partial v}{\partial x}=0\). So, \begin{eqnarray*} \frac{\partial F}{\partial x}\cdot 1 +\frac{\partial F}{\partial y}\cdot 0+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} &=&0 \\[4pt] \frac{\partial F}{\partial x}+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} &=&0 \end{eqnarray*}

855

If \(\dfrac{\partial F}{\partial z}\neq 0\), it follows that \begin{equation*} \frac{\partial z}{\partial x}=-\frac{\dfrac{\partial F}{\partial x}}{\dfrac{ \partial F}{\partial z}}=-\frac{F_{x}(x,y,z)}{F_{z}(x,y,z)} \end{equation*}

In a similar way, it can be shown that \[ \frac{\partial z}{\partial y}=-\frac{F_{y}(x,y,z)}{F_{z}(x,y,z)} \]

Implicit Differentiation Formulas II

If a differentiable function \(z=f(x,y)\) is defined implicitly by the equation \(F(x,y,z)=0\), then \[ \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{\partial z}{\partial x}=-\dfrac{F_{x}(x,y,z)}{ F_{z}(x,y,z)}\qquad \hbox{and} \qquad \dfrac{\partial z}{\partial y}=-\dfrac{F_{y}(x,y,z)}{ F_{z}(x,y,z)} }}} \tag{4} \end{equation*} \]

provided \(\dfrac{\partial F}{\partial z}=F_{z}(x,y,z)\neq 0.\)

Differentiating an Implicitly Defined Function

Find \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) if \(z=f(x,y) \) is defined implicitly by the function \[ F(x,y,z)=x^{2}z^{2}+y^{2}-z^{2}+6yz-10=0. \]

Solution First we find the partial derivatives of \(F.\) \begin{equation*} F_{x}=\dfrac{\partial F}{\partial x}=2xz^{2}\qquad F_{y}=\dfrac{ \partial F}{\partial y}=2y+6z\qquad F_{z}=\dfrac{\partial F}{\partial z} =2x^{2}z-2z+6y \end{equation*}

Then we use (4). If \(F_{z}=2x^{2}z-2z+6y\neq 0\), \[ \dfrac{\partial z}{\partial x}=-\dfrac{2xz^{2}}{2x^{2}z-2z+6y}=-\dfrac{ xz^{2}}{x^{2}z-z+3y} \]

and \[ \dfrac{\partial z}{\partial y}=-\dfrac{2y+6z}{ 2x^{2}z-2z+6y}=-\dfrac{y+3z}{x^{2}z-z+3y} \]

NOW WORK

Problem 49.

4 Use a Chain Rule in a Proof

The Chain Rules are often used in proofs involving functions of two or more variables.

Using a Chain Rule in a Proof

Let \(p=f(v-w, v-u, u-w)\) be a differentiable function. Show that \[ \frac{\partial p}{\partial u}+\frac{\partial p}{\partial v}+\frac{\partial p}{\partial w}=0 \]

Solution Let \(x=v-w\), \(y=v-u\), and \(z=u-w\). Then \(p=f(x,y,z)\). We use an extension of Chain Rule II. Since \(\dfrac{\partial x}{\partial u}=0,\) \(\dfrac{\partial y}{\partial u} =-1,\) and \(\dfrac{\partial z}{\partial u}=1,\) we have \[ \frac{\partial p}{\partial u}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial u}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial u}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial u}=\frac{\partial p}{ \partial x}(0)+\frac{\partial p}{\partial y}(-1)+\frac{\partial p}{\partial z }(1)=-\frac{\partial p}{\partial y}+\frac{\partial p}{\partial z}\hbox{ } \]

856

Since \(\dfrac{\partial x}{\partial v}=1,\) \(\dfrac{\partial y}{\partial v}=1,\) and \(\dfrac{\partial z}{\partial v}=0,\) we have \[ \frac{\partial p}{\partial v}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial v}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial v}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial v}=\frac{\partial p}{ \partial x}(1)+\frac{\partial p}{\partial y}(1)+\frac{\partial p}{\partial z} (0)=\frac{\partial p}{\partial x}+\frac{\partial p}{\partial y} \]

Since \(\dfrac{\partial x}{\partial w}=-1,\) \(\dfrac{\partial y}{\partial w} =0,\) and \(\dfrac{\partial z}{\partial w}=-1,\) we have \[ \frac{\partial p}{\partial w}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial w}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial w}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial w}=\frac{\partial p}{ \partial x}(-1)+\frac{\partial p}{\partial y}(0)+\frac{\partial p}{\partial z }(-1)=-\frac{\partial p}{\partial x}-\frac{\partial p}{\partial z} \]

Adding these, we get \[ \underset{\color{#0066A7}{\hbox{ }\hspace{5pc}\dfrac{{\partial p}}{{\partial u}}}}{\dfrac{ \partial p}{\partial u}+\dfrac{\partial p}{\partial v}+\dfrac{\partial p}{ \partial w}=\underbrace{\left( -\frac{\partial p}{\partial y}+\frac{\partial p}{\partial z}\right) }}+\underset{\color{#0066A7}{\dfrac{{\partial p}}{{ \partial v}}}}{\underbrace{\left( \frac{\partial p}{\partial x}+\frac{ \partial p}{\partial y}\right) }}+\underset{\color{#0066A7}{\dfrac{{\partial p}}{ {\partial w}}}}{\underbrace{\left( -\frac{\partial p}{\partial x}- \frac{\partial p}{\partial z}\right) \,\,\,}}=0 \]

NOW WORK

Problem 65.