Concepts and Vocabulary
A(n) _____ _______ is a function that associates a vector to a point in the plane or to a point in space.
True or False Let \(P=P(x,y,z)\), \(Q=Q(x,y,z)\), and \(R=R(x,y,z)\) be functions of three variables defined on a subset \(E\) of space. A vector field over \(E\) is defined as the function \(F(x,y,z)=P(x,y,z)+Q(x,y,z)+R(x,y,z)\).
The domain of the vector field \(\mathbf{F}=\mathbf{F}(x,y)\) is a set of points \((x,y) \) in the plane, and the range of \(\mathbf{F}\) is a set of ______ in the plane.
977
True or False The gradient of a function \(f\) is an example of a vector field.
Skill Building
In Problems 5–14, describe each vector field by drawing some of its vectors.
\(\mathbf{F}=\mathbf{F}(x,y)=x\mathbf{i}+y\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y)=x\mathbf{i}-y\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y)=\mathbf{i}+x\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y)=y\mathbf{i}-\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y)=\mathbf{i}\)
\(\mathbf{F}=\mathbf{F}(x,y)=-\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y)=\mathbf{i}+\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y)=-\mathbf{i}+\mathbf{j}\)
\(\mathbf{F}=\mathbf{F}(x,y,z)=z \mathbf{k}\)
\(\mathbf{F}=\mathbf{F}(x,y,z)=x\mathbf{i}\)
In Problems 15 and 16, use graphing technology to represent each vector field. Then describe the vector field.
\(\mathbf{F}=\mathbf{F}(x,y,z)=\dfrac{x\mathbf{i}+y\mathbf{j}+z\mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\)
\(\mathbf{F}=\mathbf{F}(x,y,z)=-\dfrac{x\mathbf{i}+y\mathbf{j}+z\mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\)
Applications and Extensions
In Problems 17–20, find the gradient vector field of each function \(f.\)
\(f(x,y) =x\sin y+\cos y\)
\(f(x,y) =xe^{y}\)
\(f( x,y,z) =x^{2}y+xy+y^{2}z\)
\(f(x,y,z) =x^{2}y+xyz^{2}\)
Gravitational Potential Energy The gravitational field \(\bf{g}\) due to a very small object of mass \(m {\rm kg}\) that is \(r\) meters (m) from a large object is given by \(\mathbf{g}=\!-\dfrac{Gm}{r^{3}}\mathbf{r}\), where \(G=6.67\times\! 10^{-11}{\rm N}{\rm m}^{2}\!/\!{\rm kg}^{2}\) and \(\mathbf{r}={x}\mathbf{i}+y\mathbf{j}+z\mathbf{k}\). Show that the gravitational field is a gradient vector field. That is, show that \(\mathbf{g}=- {\boldsymbol\nabla }u,\) where \(u=-\dfrac{Gm}{r}\). The scalar function \(u\) is called the gravitational potential due to the mass \(m\).